[发明专利]风电竞价场内交易数据分析方法、装置、设备及介质在审

专利信息
申请号: 201911014039.8 申请日: 2019-10-23
公开(公告)号: CN110826777A 公开(公告)日: 2020-02-21
发明(设计)人: 郭映军 申请(专利权)人: 华能大理风力发电有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q30/02;G06Q50/06;G06N3/04
代理公司: 武汉红观专利代理事务所(普通合伙) 42247 代理人: 李季
地址: 671000 云南省大理白族自治*** 国省代码: 云南;53
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 竞价 场内 交易 数据 分析 方法 装置 设备 介质
【说明书】:

发明提出了一种风电竞价场内交易数据分析方法、装置、设备及介质。包括:获取市场的历史原始数据,根据市场的历史原始数据建立向量;建立极大极小差值法,通过极大极小差值法对该历史原始数据进行计算,获取计算向量,获取市场的预测向量,将该预测向量与计算向量进行比较,当预测向量满足计算向量的范围时,将该预测向量作为预测值;建立神经网络算法,通过神经网络算法对预测值进行计算,获取计算的结果作为预测电价。本发明通过获取市场历史原始数据,通过建立相似日法中的极大极小差值算法来预测需要的数据,在得到需要的数据之后,通过搭建神经网络算法,对预测的数据进行计算,得到预测电价,为竞价决策做辅助。

技术领域

本发明涉及风电竞价技术领域,尤其涉及一种风电竞价场内交易数据分析方法、装置、设备及介质。

背景技术

近年来,全球环境问题与能源问题日益突出,可再生能源在国内外受到广泛的关注并迅速发展,随着风电技术的成熟和成本的下降,为了实现市场优化资源配置,风电商需要参与到市场竞价中,竞价决策因此而来,竞价决策是指通过市场运营机构(或电力交易中心)组织交易的卖方或买方参与市场投标,以竞争方式确定交易量以及其价格的过程。

但是,现有的竞价场内交易数据的展示方式过于简单,仅仅只通过图表、曲线以及柱状图来展示当月的数据,同时,也没有对历史数据进行分析和预测,所以,如何对历史数据进行分析,对量价进行预测,为竞价决策做出辅助成为了一个亟待解决的问题。

上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。

发明内容

有鉴于此,本发明提出了一种风电竞价场内交易数据分析方法、装置、设备及介质,旨在解决现有技术无法对历史数据进行分析,对量价进行预测,为竞价决策做出辅助的技术问题。

本发明的技术方案是这样实现的:

一方面,本发明提供了一种风电竞价场内交易数据分析方法,所述风电竞价场内交易数据分析方法包括以下步骤:

S1,获取市场的历史原始数据,根据市场的历史原始数据建立向量;

S2,建立极大极小差值法,通过极大极小差值法对该历史原始数据进行计算,获取计算向量,获取市场的预测向量,将该预测向量与计算向量进行比较,当预测向量满足计算向量的范围时,将该预测向量作为预测值;

S3,建立神经网络算法,通过神经网络算法对预测值进行计算,获取计算的结果作为预测电价。

在以上技术方案的基础上,优选的,步骤S1中,市场的历史原始数据包括竞价双方的历史报价、历史成交价格、历史结算价格。

在以上技术方案的基础上,优选的,步骤S1中,获取市场的历史原始数据,根据市场的历史原始数据建立向量,还包括以下步骤,根据市场的历史原始数据建立向量:

Y=[vmax,vmin,paver,haver];

其中,Y表示根据市场的历史原始数据建立的向量,vmax代表历史报价的最大值,vmin代表历史报价的最小值,paver代表历史成交价格的平均值,haver代表历史结算价格的平均值。

在以上技术方案的基础上,优选的,步骤S2中,建立极大极小差值法,通过极大极小差值法对该历史原始数据进行计算,获取计算向量,还包括以下步骤,建立极大极小差值法,根据极大极小差值法对该向量进行归一化,获取归化后的向量。

在以上技术方案的基础上,优选的,还包括以下步骤,归一化公式为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华能大理风力发电有限公司,未经华能大理风力发电有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911014039.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top