[发明专利]一种对抗性网络的网络攻击检测方法及系统在审
申请号: | 201910874123.0 | 申请日: | 2019-09-17 |
公开(公告)号: | CN110535874A | 公开(公告)日: | 2019-12-03 |
发明(设计)人: | 段彬 | 申请(专利权)人: | 武汉思普崚技术有限公司 |
主分类号: | H04L29/06 | 分类号: | H04L29/06;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 430070 湖北省武汉市东湖新技术开发区光谷大道3*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 网络攻击模型 噪声模拟 机器学习 学习模块 历史访问数据 网络攻击检测 提升机器 网络攻击 训练机器 真实网络 攻击 攻击源 构建 复合 检测 网络 分析 帮助 | ||
本发明提供一种对抗性网络的网络攻击检测方法及系统,可以基于历史访问数据,分析构建一个噪声模拟网络攻击模型,首先使用真实网络攻击流量训练所述噪声模拟网络攻击模型,模型自身还有不断复合、变异网络攻击的能力,当噪声模拟网络攻击模型训练完毕后,在接入机器学习模块,作为机器学习模块的模拟攻击源,不间断地攻击训练机器学习模块,帮助提升机器学习模块检测的能力。
技术领域
本申请涉及网络安全技术领域,尤其涉及一种对抗性网络的网络攻击检测方法及系统。
背景技术
现有的统计分析和机器学习虽然能检测恶意软件、恶意代码、恶意行为等,但还存在两个不足:一是,训练过程中攻击数据不足,远远少于正常数据,数据的不足和不平衡会导致检测模型失衡,无法正确检测攻击数据或者行为;二是,随着技术的发展,攻击者的攻击手段也在不断改变,然而这些攻击数据不会提前公开,无法将它们用于模型训练,导致模型无法检测未知的攻击数据。所以急需一种可以自我生成可使用的攻击数据,增强训练数据,提升检测模型性能的方法和系统。
发明内容
本发明的目的在于提供一种对抗性网络的网络攻击检测方法及系统,可以基于历史访问数据,分析构建一个噪声模拟网络攻击模型,首先使用真实网络攻击流量训练所述噪声模拟网络攻击模型,模型自身还有不断复合、变异网络攻击的能力,当噪声模拟网络攻击模型训练完毕后,在接入机器学习模块,作为机器学习模块的模拟攻击源,不间断地攻击训练机器学习模块,帮助提升机器学习模块检测的能力。
第一方面,本申请提供一种对抗性网络的网络攻击检测方法,所述方法包括:
获取历史访问数据,根据已知的网络攻击类型的特征,分析提取历史访问数据中攻击数据的特征向量;
基于所述攻击数据的特征向量,构建噪声模拟网络攻击模型,应用该模型可随机生成已知的各种类型的网络攻击以及多种网络攻击复合;
所述多种网络攻击复合包括同时具备若干种网络攻击的特征,或者连续进行若干种网络攻击,或变异网络攻击特征;
将所述噪声模拟网络攻击模型作为对抗性网络的生成器,所述生成器的输出流量不间断地与真实网络攻击流量一并送入判别器;
所述判别器根据两端输入的生成器输出流量和真实网络攻击流量,得出判别结果;如果判别结果为真时,表明生成器输出流量与真实网络攻击流量在特征向量上非常接近,判别器将相似度信息反馈给生成器;如果判别结果为假时,表明生成器输出流量与真实网络攻击流量在特征向量上差别很大,判别器将差别度信息、真实网络攻击流量的特征向量一并反馈给生成器;
生成器根据判别器的反馈结果调整噪声模拟网络攻击模型的参数,再次生成新的输出流量;
当判别器得到的判别结果为真的比率大于预先设置的阈值时,表明所述噪声模拟网络攻击模型训练完毕;
将所述噪声模拟网络攻击模型接入机器学习模块,由所述噪声模拟网络攻击模型不间断随机生成网络攻击流量,供机器学习模块自我学习;
所述机器学习模块借助所述噪声模拟网络攻击模型,不间断丰富各种网络攻击特征向量样本,对真实网络流量进行网络攻击检测,并将检测结果反馈给管理员,管理员可以定时根据检测结果调整所述噪声模拟网络攻击模型的参数,启动所述噪声模拟网络攻击模型的更新机制。
结合第一方面,在第一方面第一种可能的实现方式中,所述变异网络攻击特征包括对已知的网络攻击特征向量做扩展,以及修改若干攻击的字段。
结合第一方面,在第一方面第二种可能的实现方式中,所述判别器还会将判别的结果反馈给管理员,供管理员实时调整所述噪声模拟网络攻击模型的参数。
结合第一方面,在第一方面第三种可能的实现方式中,所述噪声模拟网络攻击模型的更新机制,是指再次将所述噪声模拟网络攻击模型作为生成器,将生成器的输出流量送入所述判别器。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉思普崚技术有限公司,未经武汉思普崚技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910874123.0/2.html,转载请声明来源钻瓜专利网。