[发明专利]目标群组检测方法、装置、计算机设备及存储介质有效

专利信息
申请号: 201910367835.3 申请日: 2019-05-05
公开(公告)号: CN110083791B 公开(公告)日: 2020-04-24
发明(设计)人: 陈啟柱;陈振;黄剑飞 申请(专利权)人: 北京三快在线科技有限公司
主分类号: G06F16/958 分类号: G06F16/958;G06F16/901;G06K9/62
代理公司: 北京三高永信知识产权代理有限责任公司 11138 代理人: 祝亚男
地址: 100190 北京市海*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 目标 检测 方法 装置 计算机 设备 存储 介质
【说明书】:

发明公开了一种目标群组检测方法、装置、计算机设备及存储介质,属于网络安全技术领域。所述方法包括:对待检测数据中每个特征列进行分组,得到多个特征组,根据多个特征列对应的指示矩阵与特征关联矩阵,获取相似度矩阵,根据所述相似度矩阵进行聚类,得到多个用户组,根据所述多个特征组和所述多个用户组进行检测,确定所述多个用户组中的目标群组,所述目标群组为具有目标特性的群组。相较于仅依赖社交关系以及标签来对用户进行分组,本发明对用户的各个特征维度都进行了分组,获取了包含用户之间的相似度的相似度矩阵,通过对相似度矩阵聚类得到的多个用户组进行检测,从而确定出具有目标特性的群组,准确率较高,检测效果好。

技术领域

本发明涉及网络安全技术领域,特别涉及一种目标群组检测方法、装置、计算机设备及存储介质。

背景技术

随着互联网技术的快速发展,互联网已经与人们的生活息息相关,然而互联网在给人们的生活带来了极大便利的同时,也给不法分子带来了可乘之机。例如,互联网欺诈案例越来越多,且往往是团伙作案,由于互联网的特性,实施诈骗犯罪的团伙往往使用高科技手段掩饰团伙成员之间的关系,且具有案件类型复杂多变、技术手段更新迭代快、成团成规模、数据量大等特征,导致反欺诈工作困难重重。

现阶段通常采用基于无监督学习的方式来进行欺诈人群的检测,通过待检测人群的社交关系来判定待检测人群是否有欺诈行为。

然而上述技术存在的问题是,由于技术不成熟,对标签具有弱依赖,且依据的是社交关系,导致欺诈人群检测效果不好。

发明内容

本发明实施例提供了一种目标群组检测方法、装置、计算机设备及存储介质,能够解决由于技术不成熟,标签具有弱依赖,且依据的是社交关系,导致欺诈人群检测效果不好的问题。该技术方案如下:

一方面,提供了一种目标群组检测方法,该方法包括:

对待检测数据中每个特征列进行分组,得到多个特征组,所述每个特征列对应至少一个特征组,所述每个特征列包括不同用户的同一特征维度的特征;

根据多个特征列对应的指示矩阵与特征关联矩阵,获取相似度矩阵,所述相似度矩阵中的元素为多个用户中用户之间的相似度,其中,每个特征列的特征关联矩阵的元素用于表示所述每个特征列中特征组之间的相似度,每个特征列的指示矩阵的元素用于指示所述多个用户所属的特征组;

根据所述相似度矩阵进行聚类,得到多个用户组;

根据所述多个特征组和所述多个用户组进行检测,确定所述多个用户组中的目标群组,所述目标群组为具有目标特性的群组。

在一种可能的实现方式中,所述根据多个特征列对应的指示矩阵与特征关联矩阵,获取相似度矩阵之前,所述方法还包括:

获取每个所述特征列对应的指示矩阵,得到多个指示矩阵;

将每个指示矩阵输入特征关联函数中,得到对应的特征关联矩阵,所述特征关联函数用于通过机器学习的方式根据所述指示矩阵中的元素获取对应的特征关联矩阵。

在另一种可能的实现方式中,所述根据多个特征列对应的指示矩阵与特征关联矩阵,获取相似度矩阵,包括:

将多个特征列对应的指示矩阵和特征关联矩阵输入相似度计算函数中,得到相似度矩阵,所述相似度计算函数用于根据所述指示矩阵的元素和所述特征关联矩阵的元素获取所述多个用户中用户之间的相似度。

在另一种可能的实现方式中,所述根据所述多个特征组和所述多个用户组进行检测,确定所述多个用户组中的目标群组,所述目标群组为具有目标特性的群组,包括:

根据所述多个特征组和所述多个用户作为节点,在满足目标条件的节点之间创建边,得到图模型;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京三快在线科技有限公司,未经北京三快在线科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910367835.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top