[发明专利]基于自抗扰的无模型自适应AUV控制方法有效
申请号: | 201811561751.5 | 申请日: | 2018-12-20 |
公开(公告)号: | CN109507885B | 公开(公告)日: | 2020-09-25 |
发明(设计)人: | 何波;李红佳;尹青青;沈钺;沙启鑫 | 申请(专利权)人: | 中国海洋大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 青岛中天汇智知识产权代理有限公司 37241 | 代理人: | 王丹丹 |
地址: | 266000 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 模型 自适应 auv 控制 方法 | ||
本发明公开了一种基于自抗扰的无模型自适应AUV控制方法,首先利用自抗扰控制中的微分跟踪器对输入信号安排过渡过程并提取其微分信号,然后扩张状态观测器把系统的不确定扰动看作总扰动并对其进行实时的动态估计和补偿,并将微分跟踪器跟踪出来的信号输入到无模型自适应控制器之中,最后将扩张状态观测器观测出来的干扰作用在无模型自适应控制器的输出舵角之上,最终实现AUV的运动控制。本发明克服了传统控制算法快速性和超调性之间的矛盾,大大提高了系统的抗干扰能力,并且实现简单、计算量小、鲁棒性强,对于未知非线性时变系统控制效果明显,可以广泛应用AUV的运动控制当中,并具有良好的控制效果。
技术领域
本发明属于水下机器人智能控制领域,具体涉及一种基于自抗扰的无模型自适应AUV控制方法。
背景技术
自主式水下机器人(AUV)是一种自带能源,依靠其自治能力来管理和控制自身以完成预定任务的水下航行器,可用于海洋科学调查、港口安防监测、水下搜救、海军应用部署等领域。运动控制技术是水下机器人的关键技术之一,良好的运动控制技术是水下机器人完成特定任务的前提和保障。随着水下机器人应用范围的扩大,对其自主性、运动控制的精度和稳定性的要求也随之逐步增加,因此如何提高水下机器人的控制性能是当今研究的一个重要课题。
目前主要采用的AUV运动控制技术有:PID控制、H∞控制、模糊控制、神经网络控制等,PID控制算法是应用最广泛的控制算法,但是存在响应慢、易超调、抗干扰能力差等缺点。H∞控制的控制器的设计过程繁琐,对设计者的经验要求较高;模糊控制的众多的模糊变量以及隶属度函数的选择需要有已被实践验证的效果较好的专家经验知识来指导设计,对于一种新设计的根本没有经验可以利用;而神经网络的自适应过程是需要时间的,特别是当外界干扰的幅度和周期和水下机器人的运动幅值和周期相近时,神经网络的学习就出现滞后现象,使控制出现振荡。针对上述问题,对AUV的无模型自适应控制方面以及强抗干扰性能方面的研究成为了AUV运动控制研究的重要部分。
发明内容
本发明针对复杂海洋环境,为弥补传统算法模型设计复杂以及抗干扰能力差的缺点,提出一种基于自抗扰的无模型自适应AUV控制方法,不需要建立精确数学模型即可实现智能运动控制。
本发明是采用以下的技术方案实现的:基于自抗扰的无模型自适应AUV控制方法,包括以下步骤:
(1)通过自抗扰控制的微分跟踪器对水下航行器系统中的期望航向、期望俯仰信号进行跟踪,并提取其微分信号;
(2)通过自抗扰控制的扩张状态观测器,对水下航行器系统的不确定扰动进行实时动态估计和补偿;
(3)针对水下航行器的姿态运动,建立基于紧格式动态线性化模型,确定该模型中的伪梯度向量形式;
(4)针对紧格式动态线性模型中的伪梯度向量,设计参数自适应估计方程,对伪梯度向量进行估计;
(5)根据动态线性化模型建立误差准则函数,通过最小化误差准则函数设计出无模型自适应控制器;
(6)将自抗扰控制的微分跟踪器跟踪出来的信号,输入到无模型自适应控制器中,并得出输出舵角;
(7)将自抗扰控制扩张状态观测器估计出来的干扰,作用在无模型自适应控制器的输出舵角上,对干扰进行补偿;
(8)调整运动控制参数,收集AUV中的航向、深度数据,并进行分析,进而实现对AUV的运动控制。
进一步的,所述步骤(1)中,微分跟踪器的算法设计如下:
其中:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国海洋大学,未经中国海洋大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811561751.5/2.html,转载请声明来源钻瓜专利网。