[发明专利]借贷欺诈检测模型训练方法、借贷欺诈检测方法及装置有效

专利信息
申请号: 201811249963.X 申请日: 2018-10-25
公开(公告)号: CN109389494B 公开(公告)日: 2021-11-05
发明(设计)人: 郭豪;孙善萍;康晓中;蔡准;孙悦;郭晓鹏 申请(专利权)人: 北京芯盾时代科技有限公司
主分类号: G06Q40/02 分类号: G06Q40/02;G06K9/62
代理公司: 北京超凡志成知识产权代理事务所(普通合伙) 11371 代理人: 徐丽
地址: 100000 北京市海淀区*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 借贷 欺诈 检测 模型 训练 方法 装置
【说明书】:

本申请提供了一种借贷欺诈检测模型训练方法、借贷欺诈检测方法及装置,其中借贷欺诈检测模型训练方法包括:获取多个样本用户的身份信息、用户银行流水信息,以及与每个样本用户对应的欺诈标注信息;基于身份信息构建身份特征向量;以及根据用户银行流水信息,构建流水特征向量;将身份特征向量以及流水特征向量进行拼接,生成用于表征每个样本用户身份以及支出收入情况的目标特征向量;将目标特征向量输入至目标神经网络,获取目标特征向量的欺诈检测结果;根据欺诈检测结果以及对应的欺诈标注信息,对目标神经网络进行训练,得到借贷欺诈检测模型。本申请能够提高信贷平台对欺诈用户的识别效率和识别准确率,同时大大的节省了人力成本。

技术领域

本申请涉及机器学习技术领域,具体而言,涉及一种借贷欺诈检测模型训练方法、借贷欺诈检测方法及装置。

背景技术

随着互联网金融的快速发展,伴随而来的是互联网欺诈及信贷风险发生率的上升。据统计数据显示,近年来我过消费金融行业资产不良率呈不断上升趋势,中国互联网欺诈风险已在全球排名前三,网络犯罪每年给全球带来高达4450亿美元的经济损失,日益复杂并向不同行业渗透。

互联网金融风险包含信用风险和操作风险,信用风险即客户在发起借款请求时即无意还款。其中信用风险中欺诈类居高,消费金融的坏账损失超过50%来源于欺诈。

为了规避借贷中的欺诈行为,目前借贷平台处理用户的借贷请求的时候基本上都是采取人工审核的方式,审核用户在进行借贷申请的时候为了证明自己的身份信息往往需要提供一些能够反应个人信息的材料,一般包括:学历证明,收入证明,职业信息,地域信息,历史银行流水信息等。

一般来说,借贷平台只会对其认定的具有还款能力并且消费行为正常的借贷者发放贷款,其中银行流水信息是衡量一个用户还款能力的最重要的维度。每个月拥有固定收入以及符合规律的消费行为记录将能够帮助用户高概率的通过借贷平台的审核。基于此类放贷规则,现在很多黑产中介会通过伪造银行流水的方式帮助借贷用户进行隐瞒自身资质以达到贷款目的,此类借款人往往存在逾期甚至失联等高风险。

正是由于在信贷平台对借贷用户进行信用审核的时候基本上都是依靠业务人员的专家经验进行判断,由于银行历史流水信息往往比较繁杂,涉及的信息的体量比较大,单纯由人工审核的话不但效率低下,而且很难综合银行流水数据和用户个人信息得出整体的正确结论。

发明内容

有鉴于此,本申请实施例的目的在于提供一种借贷欺诈检测模型训练方法、借贷欺诈检测方法及装置,能够提高信贷平台对欺诈用户的识别效率和识别准确率,同时大大的节省了人力成本。

第一方面,提供一种借贷欺诈检测模型训练方法,包括:

获取多个样本用户的身份信息、用户银行流水信息,以及与每个样本用户对应的欺诈标注信息;

针对每个样本用户,基于该样本用户的所述身份信息构建身份特征向量;以及

根据所述用户银行流水信息,构建流水特征向量;

将所述身份特征向量以及该样本用户的所述流水特征向量进行拼接,生成用于表征该样本用户身份以及支出收入情况的目标特征向量;

将所述目标特征向量输入至目标神经网络,获取各个所述样本用户的欺诈检测结果;

根据所述欺诈检测结果以及对应的欺诈标注信息,对所述目标神经网络进行训练,得到所述借贷欺诈检测模型。

在一种可选实施方式中,所述身份信息包括:多个身份特征下的特征值;

所述针对每个样本用户,基于该样本用户的所述身份信息构建身份特征向量,包括:

根据该样本用户在多个身份特征下的特征值,生成该样本用户的身份特征向量。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京芯盾时代科技有限公司,未经北京芯盾时代科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811249963.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top