[发明专利]一种基于工况识别的变衰减因子指数预测模型方法有效

专利信息
申请号: 201811013106.X 申请日: 2018-08-31
公开(公告)号: CN109284540B 公开(公告)日: 2022-11-15
发明(设计)人: 刘永刚;刘俊骏;陈达奇;秦大同 申请(专利权)人: 重庆大学
主分类号: G06F30/27 分类号: G06F30/27;G06K9/62;G06N20/10
代理公司: 重庆缙云专利代理事务所(特殊普通合伙) 50237 代理人: 王翔
地址: 400044 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 工况 识别 衰减 因子 指数 预测 模型 方法
【说明书】:

发明公开了一种基于工况识别的变衰减因子指数预测模型方法,主要步骤为:1)确定标准循环工况。2)将标准循环工况分割成m个工况块I。3)提取m个工况块I的最优衰减因子Td。4)所有工况块I中包含的样本数据记为数据集X。5)将数据集X分解为训练样本数据集A和测试样本数据集B。6)对SVM识别器进行训练和测试。7)将待检测的汽车实际行驶的综合循环工况分割成n个工况块II。将n个工况块II输入到测试完成的SVM识别器中,从而得到最优衰减因子Td'。8)得到变衰减因子指数预测模型。9)将n个工况块II输入到变衰减因子指数预测模型中,得到车速预测结果。本发明具有自适应性、高预测精度、不易陷入局部最优且能适用多种行驶工况。

技术领域

本发明涉及混合动力汽车控制领域,具体是一种基于工况识别的变衰减因子指数预测模型方法。

背景技术

混合动力汽车不仅具有减少燃油消耗和排放污染的优点,而且还具有续驶里程长,对电池电量依赖小等优势,因此混合动力汽车是目前发展、推广最成功的新能源车型

能量管理策略在改善插电式混合动力汽车燃油经济性上效果显著,而基于规则的能量管理策略技术简单、逻辑性强、计算量小、在实际生产中广泛应用。但是基于规则的控制策略依赖于开发人员的经验,且均为针对特定行驶工况进行制定,对于工况的适应性较差,不具有通用性,无法实现燃油经济性的最优。基于全局优化的能量管理策略计算量较大难以实现实时控制且需要提前预知汽车的行驶工况,无法在实车上应用。基于实时优化的控制策略,计算量相对较小,但是实时最优并不能实现全局最优,混合动力汽车的燃油经济性仍有待提高。模型预测控制(MPC)作为在工业领域已获得广泛应用的优化控制方法,由于其预测域的引入,使得其在具有实时运算潜力的同时能够获得在预测域内的最优解,因而对PHEV能量管理问题同样适用。MPC具有通用的结构,其中包含预测模型、参考轨迹、在线校正、受控系统和滚动优化5个模块。而以指数预测为代表的未来车速的预测是典型预测方法。

指数预测模型拥有简单且计算量小的优点,已经广泛地应用在基于模型预测控制的混合动力汽车能量管理中。车速呈指数变化的预测模型,随着指数预测精度的提升MPC的燃油经济性越好。但是指数预测模型的预测精度十分依赖衰减因子的选择。

然而针对一种能够根据工况进行衰减因子自适应调整的研究尚未见有相关文献研究。

发明内容

本发明的目的是解决现有技术中存在的问题。

为实现本发明目的而采用的技术方案是这样的,一种基于工况识别的变衰减因子指数预测模型方法,主要包括以下步骤:

1)确定汽车行驶工况特征参数的类别。

所述汽车行驶工况的特征参数主要包括平均车速最大车速vmax、最大加速度amax、平均加速度最大减速度dmax、平均减速度怠速时间比例ri、加速时间比例ra、减速时间比例rd和匀速时间比例rc

汽车行驶工况的特征参数的主要计算公式分别如公式1至10所示。

平均车速如下所示:

式中,vg为每个时刻的循环工况车速。tg为整个循环工况时间。i为任意循环工况时间。

最大车速vmax如下所示:

vmax=max(vg)。 (2)

式中,max表示取最大值。

最大加速度amax如下所示:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811013106.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top