[发明专利]一种基于大数据的锂电池筛选系统在审
| 申请号: | 201810602446.X | 申请日: | 2018-06-12 |
| 公开(公告)号: | CN109047040A | 公开(公告)日: | 2018-12-21 |
| 发明(设计)人: | 刘厚德;刘坤富;饶华兵;刘秉奇 | 申请(专利权)人: | 东莞市德尔能新能源股份有限公司 |
| 主分类号: | B07C5/344 | 分类号: | B07C5/344;B07C5/36 |
| 代理公司: | 东莞市冠诚知识产权代理有限公司 44272 | 代理人: | 莫杰华 |
| 地址: | 523000 广东省东*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 电池特征参数 服务器 电池数据 分容柜 样本 内阻检测 筛选系统 大数据 锂电池 内阻 电池 自学习系统 测试电池 存储电池 电池分类 电池特征 老化数据 实时获取 数据查询 特征参数 网络通信 可视化 自学习 网关 细化 登陆 采集 筛选 传输 预测 | ||
本发明公开了一种基于大数据的锂电池筛选系统,其包括内阻检测仪,负责测试电池的内阻;分容柜,负责包括电池数据样本的采集;服务器,内阻检测仪和分容柜将对电池数据样本通过网络通信的方式将数据经网关传输到服务器上;自学习系统,根据服务器上的电池数据样本得到电池特征参数,该电池特征参数包括电池的当前状况和预测状况,并且根据电池特征参数对电池按照标准进行筛选;用户通过WEB访问登陆到服务器上进行可视化的数据查询。本发明通过分容柜实时获取并存储电池参数,并得到测出的内阻,建立自学习模型,该模型随着老化数据的越来越多而变得越来细化,因此对电池特征提取也越来越精准,进而能够把特征参数相似的电池分类出来。
技术领域
本发明涉及电池筛选技术领域,特别是一种基于大数据的锂电池筛选系统(东莞市引进创新科研团队计划资助(项目编号:2014607119)
Supported by DongGuan Innovative Research team Program(NO:2014607119))。
背景技术
众所周知,电池组具有“木桶效应”,直接的结果是有些电池无法完全充满,有些电池无法完全将电量用尽,这不但影响了电池组寿命,也影响电池的续航里程,甚至会对容量设计上造成浪费,因为电池分容和配对是极其重要的生产步骤。
目前常用的分容和配对方式主要是利用分容柜对电池充放电进行分容,然后根据测试的容量、电压、内阻进行配对,因为影响电池的化学反应因素有很多,包括温度、电池材料、充放电倍率等,即使是相同内阻、容量的电池也不能保证配对后的一致性,这也是很多电池组即使经过分容、筛选、配对后仍然无法达到设计指标的一个原因。
目前主流的分容筛选方式举例说明:
先对电池进行一次分容,分容的方式采用老化柜对电池进行充放电老化测试,测试完并静置后测量电压、容量、内阻,根据电压、容量、内阻的参数进行A/B/C/D三级分级并归类,A级为符合最高标准的性能,B/C为次级电池,D级直接报废,对于B/C级的电池重新分容并归类。接着进行二次分容,同样利用充放电柜对一次分容同一分类的电池进行充放电老化测试,满足电压、容量要求的进行分类,当容量大于规格要求时,可按照20mAh为一档进行分类。最后根据分容分类出来的电池进行配对。
现有技术的缺点包含:
1、只是考虑电池老化后的电压、容量、内阻参数,事实上电池在老化时影响电池的因素有很多,包含整个老化过程中的温度影响、数据采集精度的影响等。
2、无法利用分容老化过程中的数据预测电池在同一工况下的演化发展。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,提供一种基于大数据的锂电池筛选系统。
为解决上述技术问题,本发明所采取的技术方案是:一种基于大数据的锂电池筛选系统,其包括:内阻检测仪,与电池构成内阻检测回路,并负责测试电池的内阻;分容柜,与电池构成充放电回路,并负责包括电池数据样本的采集;服务器,内阻检测仪和分容柜将对电池数据样本通过网络通信的方式将数据经网关传输到服务器上,自学习系统,根据服务器上的电池数据样本得到电池特征参数,该电池特征参数包括电池的当前状况和预测状况,并且根据电池特征参数对电池按照标准进行筛选;用户通过WEB访问登陆到服务器上进行可视化的数据查询。
上述技术方案中,所述自学习系统包括以下工作流程:
S1,建立电池特征参数训练模型;
S2,初始化,对网络权重和偏置进行赋值,并输入前期样本;
S3,电池抽样老化,每颗电池按照固定工况持续老化N个循环;
S4,神经网络迭代训练得到电池的特征参数;
S5,老化需要分容的电池;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东莞市德尔能新能源股份有限公司,未经东莞市德尔能新能源股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810602446.X/2.html,转载请声明来源钻瓜专利网。





