[发明专利]一种球状锂基CO2 有效
申请号: | 201810277041.3 | 申请日: | 2018-03-30 |
公开(公告)号: | CN108554370B | 公开(公告)日: | 2020-07-10 |
发明(设计)人: | 杨远东;刘文强;徐明厚;胡迎超;童贤靓;陈黔军 | 申请(专利权)人: | 华中科技大学 |
主分类号: | B01J20/10 | 分类号: | B01J20/10;B01J20/28;B01J20/30;B01D53/02 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智;曹葆青 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 球状 co base sub | ||
本发明公开了一种球状锂基CO2吸附剂的制备方法及设备,包括:(1)制备疏水粉末层;(2)在疏水粉末层上压制半球形腔;(3)将前驱体浆液置入半球形腔,得到浆液球;该前驱体浆液为硅溶胶与碳酸锂粉末的混合溶液;硅溶胶内的二氧化硅的物质的量为1份,碳酸锂的物质的量为2份~2.5份;(4)干燥浆液球得到生球;(5)分离疏水粉末与生球;(6)在有氧环境中煅烧生球得到球状锂基CO2吸附剂。本发明的设备用于执行上述步骤,制备过程简单,操作简便,同时制备的球状锂基CO2吸附剂球形度较好,且该循环吸附CO2的能力突出,为锂基吸附剂在实际工业化流化循环系统中的应用提供了良好的前景。
技术领域
本发明属于吸附剂的制备与改良技术领域,更具体地,涉及一种球状锂基CO2吸附剂的制备方法及设备。
背景技术
温室效应与全球气候变暖作为一个全球性的环境问题,越来越受到国际社会的广泛关注。为了减少全球CO2的排放,人们提出了碳捕集、利用、封存技术(CCUS)。
在众多的CO2减排技术中,利用固体吸附剂对CO2进行循环式吸附脱附被认为是一种很有前景的技术。而锂基吸附剂作为一种典型高温CO2固体吸附剂因其优异的循环稳定性、较高的吸附性能等优点而受到了全世界学者的广泛关注。
对于利用锂基吸附剂进行CO2循环吸附脱附所采用的系统,目前公认的最合适的技术是采用循环流化床技术。在该系统中,混合气体中的CO2在碳酸化炉(550℃左右)中被正硅酸锂吸附,碳酸化后的吸附剂循环进再生炉,在高温下(750℃左右)重新生成正硅酸锂,进而再次循环进入碳酸化炉进行下次吸附,再生炉中出来的气体即为较纯的CO2,这样就便于后续对CO2的压缩、运输、利用或埋藏。然而,由于粉末状的锂基CO2吸附剂在流化床流化过程中,很容易发生淘析现象被气流携带出系统,这样必然会造成吸附剂利用率的严重下降,导致浪费增加成本。因此,为了吸附剂在流化床中更好的流化以及节约成本,必须要对锂基CO2吸附剂进行成型研究,为其最终的工业化应用铺平道路。
目前锂基CO2吸附剂的成型方法主要是挤压法,该方法通过挤压机制备柱状吸附剂(Chemical Engineering Transactions,2013,35,373–378)。经这种方法成型后的吸附剂呈柱状,机械性能不佳容易被破碎,在实际流化过程中会有十分严重的磨损问题。此外,该方法成型过程较复杂,耗时耗能。例如:需要先将碳酸锂及二氧化硅等原材料制备成正硅酸锂粉末,之后才能使用该粉末进行成型。同时,该方法不易实现流水线作业生产,而复杂的制备过程会增加成本,不利于工业化应用。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种锂基CO2吸附剂的制备方法,其目的在于利用疏水性粉末和液滴浆液的表面张力使前驱体浆液一步成型直接制备成球形度较好的锂基吸附剂球,从而简化制备工艺,降低生产成本。
为实现上述目的,按照本发明的一个方面,提供一种球状锂基CO2吸附剂的制备方法,包括以下步骤:
(1)将疏水性粉末均匀平铺,得到疏水粉末层;
(2)在疏水粉末层上压制出具有半球形腔的疏水模具;
(3)将前驱体浆液置入半球形腔,得到浆液球;该前驱体浆液为硅溶胶与碳酸锂粉末的混合溶液;将硅溶胶内的二氧化硅的物质的量记为1份,则碳酸锂的物质的量为2份~2.5份;
(4)对浆液球进行干燥,得到生球;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810277041.3/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法