[发明专利]一种基于随机游走和条件随机场的社会标签推荐方法有效

专利信息
申请号: 201810160496.7 申请日: 2018-02-27
公开(公告)号: CN108427730B 公开(公告)日: 2020-06-09
发明(设计)人: 薛安荣;夏欢欢;曹静 申请(专利权)人: 江苏大学
主分类号: G06F16/9535 分类号: G06F16/9535;G06F16/955
代理公司: 暂无信息 代理人: 暂无信息
地址: 212013 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 随机 游走 条件 社会 标签 推荐 方法
【权利要求书】:

1.一种基于随机游走和条件随机场的社会标签推荐方法,其特征在于,包括以下步骤:

步骤1,构造基于资源的多标签随机游走模型:标签数据中的实例通常由用户、资源、标签构成,抽取出关于资源和标签的数据,根据该数据构造基于资源的随机游走模型;

步骤2,设计以标签共现率、用户相似度为边特征函数和标签预测概率为点特征函数的条件随机场;

步骤3,估计条件随机场的参数:依据步骤2估计条件随机场的参数,获得条件随机场的各个参数值;

步骤4,基于条件随机场的社会标签推荐:依据步骤2获得的特征函数,步骤3获得的参数值,建立条件随机场,获得指定用户与资源的可能推荐标签;

所述步骤1中,构造基于资源的多标签随机游走模型包括以下步骤:

步骤1.1,标签数据中的实例通常由(u,i,t)三元组构成,u代表用户,i代表资源,t代表u为i添加的标签,抽取出资源特征和标签D={(xi,yi)|1≤i≤m},其中(u,i,t)中的i对应D={(xi,yi)|1≤i≤m}中的xi,t对应yi,xi=[xi1,xi2,...,xid]代表资源i本身具有的d维特征向量,yi∈Y,Y={λ12,...,λq}代表为资源可能添加的q个标签,在获得资源标签数据集的基础上,将该资源标签数据集映射为资源随机游走图;

步骤1.2,基于步骤1.1,针对一个预测资源和资源随机游走图,构造资源的随机游走图系列;

步骤1.3,基于条件概率模型,获得预测资源的推荐标签概率向量。

2.根据权利要求1所述的一种基于随机游走和条件随机场的社会标签推荐方法,其特征在于,所述步骤1.1还包括如下过程:

将资源标签数据集中的每个数据映射为一个点,如果两个资源数据具有相同的标签,则将这两个数据对应的点相连,依据该原则生成多标签随机游走图G=(V,E),为了更准确地描述两个资源数据之间的关系,对于任意资源节点,在所有的邻居节点中,如果一个节点与该资源相关性越小,游走到这个节点的概率越低,基于该思想计算转移矩阵P。

3.根据权利要求1所述的一种基于随机游走和条件随机场的社会标签推荐方法,其特征在于,步骤1.2的具体步骤为:

步骤1.2.1,对d维输入空间的资源标签训练集和预测资源x,定义由训练集和预测资源x生成的多标签随机游走图系列;

步骤1.2.2,随机游走模型的初始化,随机游走模型的公式为S=(1-α)·PT·S0+α·d,并初始化邻接矩阵P、初始概率分布向量S0、跳转发生概率α、发生跳转时跳转到图中每个节点的概率分布向量d四个参数。

4.根据权利要求3所述的一种基于随机游走和条件随机场的社会标签推荐方法,其特征在于,步骤1.3的具体步骤为:

步骤1.3.1,对于随机游走图系列中的任一子图,应用随机游走模型得到预测资源x与标签子图的节点相连时,以x为起点游走到每个节点的稳定概率分布;

步骤1.3.2,求S向量中m个元素的平均值为预测资源游走到某标签的平均条件概率;

步骤1.3.3,计算预测资源x具有某标签的平均概率;

步骤1.3.4,根据条件概率模型,计算预测资源x被标记为某标签的概率;

步骤1.3.5,获得预测资源的预测标签概率向量,该概率向量刻画了预测资源标记为不同标签的可能性大小。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810160496.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top