[发明专利]一种高速运动目标下的子带相关配准方法有效

专利信息
申请号: 201710696364.1 申请日: 2017-08-15
公开(公告)号: CN107390198B 公开(公告)日: 2020-09-08
发明(设计)人: 张瑛;汪婷静;赵华;张延鑫;华煜明 申请(专利权)人: 电子科技大学
主分类号: G01S7/41 分类号: G01S7/41
代理公司: 成都弘毅天承知识产权代理有限公司 51230 代理人: 徐金琼;刘东
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 高速 运动 目标 相关 方法
【权利要求书】:

1.一种高速运动目标下的子带相关配准方法,其特征在于,包括以下步骤:

步骤1、根据不同波段的雷达的发射信号以及观测目标的运动信息,建立宽带雷达的目标基于几何绕射的回波信号模型获得子带回波信号;

步骤2、获得估计速度;

步骤3、利用估计速度对子带回波信号进行补偿,并通过频带外推技术,将子带回波信号的频率范围扩展到全频带得到扩展后的回波信号;

步骤4、利用扩展后的回波信号计算非相关因子;

步骤5、利用非相关因子对低频段的回波信号进行补偿。

2.如权利要求1所述的一种高速运动目标下的子带相关配准方法,其特征在于,所述步骤2采用最小熵准则获得估计速度,具体步骤为:

在目标速度范围vmin~vmax,以设定步进值vstep求出用速度补偿后的目标一维距离像熵,并在所获得的目标一维距离像熵中搜索出最小熵值,最小熵值所对应的速度就是估计速度其中vmin,vmax分别是目标速度取值的上下限。

3.如权利要求2所述的一种高速运动目标下的子带相关配准方法,其特征在于,所述目标一维距离像熵为:

其中为采样点的幅度分布,Yi={Yi(h)|h=1,2,...,n}是yi(fi)通过逆快速傅里叶变换(IFFT)得到的一维距离像,yi(fi)为补偿后的回波信号,fi=f0+niΔfi,f0表示全频带的起始频率,Δfi为第i部雷达的频率采样间隔,n1=0,...,N1-1,n2=N-N2,...,N,N1,N2表示频率步进数,N为全频带的频率采样点的个数,i=1,2,其中h,l=1,2,...,L,L是速度取值区间的长度。

4.如权利要求3所述的一种高速运动目标下的子带相关配准方法,其特征在于,所述步骤3中的扩展后的回波信号为f=f0+nΔf,n=1,…,N,N为全频带的频率采样点的个数,f0表示全频带的起始频率,Δf=min{Δf1,Δf2}表示扩展后的回波信号为进行均匀重采样的频率采样间隔Δf。

5.如权利要求4所述的一种高速运动目标下的子带相关配准方法,其特征在于,所述步骤4利用扩展后的回波信号计算非相关因子:

选定高频段回波信号为基准信号,将回波信号离散化得到并利用的相关函数R(n)作逆离散傅里叶变换得到:

其中,k=0,…,Nfft,Nfft是逆离散傅里叶变换的点数,N为全频带的频率采样点的个数,Nfft>>N,ρ代表两子带之间的幅度差,和λ分别表示两子带之间的线性相位和固定相位,为虚数单位,其中(·)*为共轭运算符,计算出线性相位为其中kmax为r(k)取得最大值时所对应的k;

步骤4.2、利用非线性最小二乘拟合来计算固定相位

构造关于固定相位λ的代价函数:

其中利用Matlab中求解非线性拟合的lsqcurvefit函数来求解代价函数,得到固定相位值λ;

步骤4.3、利用全局搜索法计算幅度差

构造关于幅度差ρ的代价函数:

其中,设定步进值Δρ在幅度差范围[ρmin ρmax]内进行搜索,搜索出使得J1(ρ)达到最小的幅度差就是幅度差ρmin,ρmax分别是幅度取值的上下限。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710696364.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top