[发明专利]一种CO2 有效
申请号: | 201710685484.1 | 申请日: | 2017-08-11 |
公开(公告)号: | CN107556996B | 公开(公告)日: | 2021-03-09 |
发明(设计)人: | 唐孝芬;熊春明;曾致翚;魏发林;邵黎明;刘平德;吕静 | 申请(专利权)人: | 中国石油天然气股份有限公司 |
主分类号: | C09K8/594 | 分类号: | C09K8/594;C09K8/512 |
代理公司: | 北京三友知识产权代理有限公司 11127 | 代理人: | 姚亮;沈金辉 |
地址: | 100007 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 co base sub | ||
本发明提供了一种CO2响应就地凝胶封窜剂及其制备方法与应用。以质量百分比计,该CO2响应就地凝胶封窜剂包括0.02‑0.2%交联剂、0.2‑2.0%疏水改性聚丙烯酰胺,余量为水,其中,所述交联剂由多胺类化合物与酚类化合物按质量比为(0.5‑3):0.5复配而成。本发明提供的CO2响应就地凝胶封窜剂在地层温度为室温‑90℃的油田中能与CO2发生交联反应,交联1‑3天后即可形成封窜凝胶,可以在油田开采中作为封窜剂或调剖堵水剂应用。
技术领域
本发明属于石油开采领域,涉及一种CO2响应就地凝胶封窜剂及其制备方法与应用。
背景技术
目前,CO2驱已成为低渗/特低渗油田一种行之有效的开发方式,然而气窜制约了CO2驱效果的充分发挥。低渗/特低渗油藏的严重非均质、天然/人工裂缝等进一步加剧气窜,严重降低了驱替效果。控制和抑制或防止气窜,扩大气驱波及体积对于提高低渗透/特低渗透油田CO2驱开发效果意义重大。目前国内外的气窜防治与封堵技术,都是从改善CO2的流度或利用化学剂封堵窜流层带以减缓气窜,目前使用的封气窜技术主要有水气交替(WAG)、CO2泡沫、凝胶及泡沫凝胶(泡沫+凝胶段塞)、 CO2增稠等方法。例如:
水气交替方法(WAG),在CO2驱油过程中控制CO2流动速度,防止CO2驱早期突破的常用方法。主要机理是向油层中交替注入水/气段塞,降低水的相对渗透率来降低水的流度,从而改善水油流度比,扩大水的波及效率。尽管水的存在会阻碍 CO2混相的形成,但是由于水的粘度较高,在CO2驱油前期,水段塞优先进入高渗层形成屏蔽,迫使CO2气体转入油气藏基岩层或低渗层,提高气驱效率及低渗层的采收率,但该方法不能有效解决CO2驱油藏气窜问题。
泡沫封窜方法,利用泡沫降低气体流度的概念最早见于Bond和Holbrook1958 年申请的专利,目前封气窜比较常用方法之一。泡沫能有效降低CO2流度并改善驱替流体在非均质油层内的流动状况。但泡沫也有自身缺点,最大的问题就是泡沫的稳定性,泡沫的稳定性受许多因素影响,如温度、盐度、含油量、润湿性等。此外,泡沫封窜现场施工难度大,地面形成泡沫,没法注入;地下形成泡沫,质量及数量难以保证,同时封窜效果差。
凝胶封窜方法,聚合物凝胶是控制气窜应用较多的方法,凝胶体系可以在气驱各个阶段对气窜进行控制,但许多凝胶都不耐酸,并不适合CO2驱导致的油藏低pH值环境。有文献报道的封窜凝胶研究主要有:1)采用磺基化间苯二酚与甲醛反应生成凝胶;2)采用铬离子交联剂与聚丙烯酰胺或黄原胶交联生成凝胶;3)直接注入丙烯酰胺单体使之就地聚合形成凝胶方法;4)凝胶体系与泡沫段塞交替注入方法(泡沫+ 凝胶),但这些方法凝胶化条件苛刻,效果不是太理想。
CO2增稠抑窜方法,该方法的原理是在CO2中加入增稠剂使其粘度增大。但由于常规聚合物和表面活性剂等增稠剂在CO2中不溶或需要大量共溶剂增稠,因此导致 CO2增稠效果不佳,此外,CO2增粘难度大、成本高,近年在CO2增稠抑窜方法研究思路上没有突破性的进展。
目前的上述封窜技术都没能有效解决油藏CO2驱气窜问题,因此,寻找一种新的封窜体系势在必行。
发明内容
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油天然气股份有限公司,未经中国石油天然气股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710685484.1/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法