[发明专利]基于改进的最小二乘支持向量机的水下目标定位方法有效

专利信息
申请号: 201710607629.6 申请日: 2017-07-24
公开(公告)号: CN107197519B 公开(公告)日: 2020-09-11
发明(设计)人: 李鑫滨;张成淋;徐加杰;闫磊;韩松 申请(专利权)人: 燕山大学
主分类号: H04W64/00 分类号: H04W64/00;H04W84/18;H04B13/02
代理公司: 秦皇岛一诚知识产权事务所(普通合伙) 13116 代理人: 李合印
地址: 066004 河北省*** 国省代码: 河北;13
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 改进 最小 支持 向量 水下 目标 定位 方法
【说明书】:

一种基于改进的最小二乘支持向量机的水下目标定位方法,其内容包括在定位区域部署n个传感器节点,根据节点间距离及节点间层次高低确定子传感网络,构建分布式水声传感网络,得到训练数据集,对LSSVR模型进行初始化;有效节点被提出用于水声传感网络以判断目标节点与其它节点通信是否被障碍物影响,如果被影响,根据水下传感器节点与目标节点通信得到的受影响数据,使用迭代收敛策略对数据进行处理,作为LSSVR模型的输入得到子传感网络的预测值;否则,直接将测量数据作为LSSVR模型的输入,得到子传感网络的预测值;根据权值函数计算得到每个子传感网络的权值;结合子传感网络的预测值和与其对应的子传感网络的权值,最终得到目标的预测位置。

技术领域

本发明涉及水声传感器智能感知技术领域,尤其是一种基于改进的最小二乘支持向量机的水下目标定位方法。

背景技术

水下目标定位,旨在通过水下水声传感网络的通信与计算能力,来获取水下目标的相关位置信息。水下目标定位技术可为海军防卫、海洋生命监测以及地震、台风预测等应用提供理论依据和技术支撑。相比于陆地环境,水下环境更复杂,节点间在水下进行通信会受到大的噪声干扰,同时传感器会受到来自障碍物的干扰。上述弱通信特征,使得水下目标精确定位成为一个挑战性的问题。

经对现有文献检索发现,中国专利申请号为201210082153.6,名称为“一种无线传感网络节点三维定位方法”,该方法通过不共面的四个锚节点与未知节点通信,得到未知节点到锚节点的距离估计值,然后结合距离估计值计算位置节点的位置坐标,实现水下传感器网络节点精确定位。然而,该方法实现精确目标定位的前提是距离估计值足够精确,而水声弱通信特征使得距离估计往往包含着噪声。如果不对干扰噪声进行处理,那么定位精度将大大降低。

另外,中国专利申请号为201510677240.X,名称为“一种基于遗传算法的室内水下目标定位方法”,该方法将水下目标的定位问题转化为优化问题,并应用混合遗传算法求解优化问题,使得测量误差对定位的影响减小,提高了定位精度。然而该学习方法容易得到局部最优解,不能达到理想的全局最优解。

检索还发现,中国专利申请号为201610645052.3,名称为“一种基于信道状态信息和支持向量机的室内被动定位方法”,该方法采用支持向量机回归的方式确定目标精确位置。虽然该方法减小了测量误差对定位带来的影响,但其定位精度依赖于训练数据,当障碍物出现干扰定位过程时,定位精度会大大降低。

因此,在考虑障碍物情况及传感网络弱通信特征的情况下,设计一种能克服测量误差影响的精确定位方法仍是一个待解决的问题。

发明内容

本发明的目的在于克服上述不足,提供一种基于改进的最小二乘支持向量机的水下目标定位方法,以提高对水下目标定位的精度。

为达到上述目的,本发明是采用下面技术方案实现的:

一种基于改进的最小二乘支持向量机的水下目标定位方法,该方法内容包括以下步骤:

步骤1,在定位区域部署n个传感器节点,每个节点与目标节点通过水声通信方式进行信息交互,并根据节点间距离确定子传感网络,以构建分布式水声传感网络;通过构建的分布式水声传感网络得到训练数据集,对最小二乘支持向量回归(Least squaressupport vector regression,LSSVR)模型进行初始化;

步骤2,在原传感网络的基础上,设计有效节点策略,以判断目标节点与其它节点通信是否被障碍物影响,如果判定被影响则进行步骤3,否则进行步骤4;

步骤3,根据水下传感器节点与目标节点通信得到的受影响数据,使用迭代收敛策略对数据进行处理,处理后的数据作为最小二乘支持向量回归(LSSVR)模型的输入得到子传感网络的预测值;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于燕山大学,未经燕山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710607629.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top