[发明专利]一种基于熵吸引的最大熵子带回声消除方法有效
申请号: | 201710551228.3 | 申请日: | 2017-07-07 |
公开(公告)号: | CN107369458B | 公开(公告)日: | 2019-09-24 |
发明(设计)人: | 赵海全;刘倩倩 | 申请(专利权)人: | 西南交通大学 |
主分类号: | G10L21/0208 | 分类号: | G10L21/0208;G10L21/0264;H04M9/08 |
代理公司: | 成都博通专利事务所 51208 | 代理人: | 陈树明 |
地址: | 610031 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 吸引 最大 熵子带 回声 消除 方法 | ||
一种基于熵吸引的最大熵子带回声消除方法,其步骤是:A、信号的采样与处理,远端信号构成当前时刻n分析滤波器一的输入向量U(n),输入向量U(n)经分析滤波器一分割成I个远端子带向量Ui(n),将远端信号滤波输入向量U(n)经分析滤波器分割成子带信号Ui(n);B、信号的抽取,将Ui(n)经抽取器进行N抽取,得到抽取后的输入信号Ui(k);C、滤波器的输出,D、回声抵消,将近端子带抽取信号di(k)与输出子带信号yi(k)相减得到误差信号ei(k),E、权系数向量的更新:E1、计算抽取时刻k的熵吸引量P(k);E2、更新得到下一个抽取时刻k+1的权系数向量W(k+1);F、令n=n+1,重复A、B、C、D的步骤,直至通话结束。该方法的收敛速度快、稳态误差低,回声消除效果明显。
技术领域
本发明属于语音通信的自适应回声消除技术领域。
背景技术
目前,回声消除器就是通过核心部件—自适应滤波器来估计回声,并在近端信号中减去回声的估计值以达到回声消除的效果。自适应回声消除技术因其成本低、效果好,得到一致认可,也是目前国际上公认的最有前景的回声消除技术之一。
从回声消除的基本原理看,利用声学回声消除器来实现回声消除,其中最核心的部分就是自适应滤波器。自适应系统中最常用的最小均方(LMS)算法往往在回声消除应用中不能获得较好的效果。为此,为了解决这一难点归一化子带自适应滤波器方法被提出,该种方法将输入信号经过分析滤波器按频率分割为多个子带信号,由于输入信号的频率与回声的相关度高,对不同的子带信号自适应的进行不同的回声消除,再进行归一化处理,能从整体上降低回声消除的难度,从而可以获得较好的收敛速度。在目前的自适应回声消除应用中,较成熟的子带回声消除方法为归一化子带类的自适应滤波算法,如有文献1“TwoImproved Normalized Subband Adaptive Filter Algorithms with Good RobustnessAgainst Impulsive Interferences”(Yu,Y.,&Zhao,H.,Circuits Syst Signal Process(2016)35:4607–4619)的(MCC‐SAF)方法,该方法是将最大熵思想加入子带(SAF)算法,以减少冲激噪声对算法的影响,该方法因没有考虑到系统的稀疏性,而没有区分系统冲激响应的幅值大小;因此,在系统为稀疏系统时该算法的性能降低。
发明内容
本发明的目的就是提出一种基于熵吸引的最大熵子带回声消除方法,该方法进行回声消除,具有较好的收敛速度和更低的稳态误差。
本发明实现其发明目的所采用的技术方案是,一种收缩变步长子带回声消除方法,其步骤如下:
A、信号的采样与处理
将当前时刻n到时刻n-L+1之间的采样远端信号u(n),u(n-1),...,u(n-L+1),构成当前时刻n分析滤波器一的输入向量U(n),U(n)=[u(n),u(n-1),...,u(n-L+1)]T;L=512是滤波器抽头数,上标T表示转置运算;
分析滤波器一将输入向量U(n)按频带分割成I个远端子带向量Ui(n),Ui(n)=[ui(n),ui(n-1),...,ui(n-L+1)]T;
同时,分析滤波器二将近端麦克风拾取到的当前时刻n的带回声的近端信号d(n)按频带分割分割成I个近端子带信号di(n);
其中,i为远端子带向量或近端子带信号的序号,i=1,2,...,I,I为远端子带向量和近端子带信号的总个数,其取值为2、4、6、8;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南交通大学,未经西南交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710551228.3/2.html,转载请声明来源钻瓜专利网。