[发明专利]一种基于社交网络的位置预测系统及方法在审
申请号: | 201710488445.2 | 申请日: | 2017-06-23 |
公开(公告)号: | CN107194011A | 公开(公告)日: | 2017-09-22 |
发明(设计)人: | 尚凤军;刘海昇 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06F17/30 | 分类号: | G06F17/30;G06N5/04;G06Q50/00 |
代理公司: | 北京国坤专利代理事务所(普通合伙)11491 | 代理人: | 姜彦 |
地址: | 400065 重*** | 国省代码: | 重庆;85 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 社交 网络 位置 预测 系统 方法 | ||
技术领域
本发明属于社交网络位置预测技术领域,尤其涉及一种基于社交网络的位置预测系统及方法。
背景技术
随着互联网的快速发展和可定位设备的大量普及,基于地理位置服务的网络应用越来越普及,如定向广告(targeted advertisement)、跟踪人口流动、预防疾病蔓延、网络安全、性能优化等,地址位置作为一种质量极高的信息资源被广泛应用。同时伴随着在线社交网络的发展,位置服务和在线社交网络逐渐趋于融合,即产生了LBSN。基于位置的LBSN是位置和社交的结合体,它支持用户随时随地在社交平台记录并分享自己的地理信息,它是以通信网络为媒介,以智能终端为主要载体的新型平台。在LBSN中,大量用户通过签到向朋友分享位置信息或地理标签。位置社交网络让基于位置的社交成为一种新的社交模式,使得线上社交和线下社交得到有机的结合,极大的改变了人们的生活方式。社交网络催生了许多基于位置的服务,为了提供更好的服务,预测用户最有可能的下一个位置是非常重要的。如通过预测用户下一个位置,商家可以更加有效的投放定向广告。现有预测方法有基于GPS轨迹历史数据的位置预测,有基于社交网络签到数据的位置预测。社交网络签到数据和GPS轨迹历史数据有着明显的区别。社交网络签到历史数据较稀疏,位置预测范围较大。相比于社交网络签到数据,连续记录的GPS数据之间间隔5-10米。但是GPS数据仅仅包括经度、纬度和时间戳信息,没有包括语义信息,无法根据社交关系进行位置预测。现有的基于社交网络的位置预测主要有运动轨迹的预测和下一地点的预测。运动轨迹的预测相对复杂,开销较大,对周期性轨迹预测表现良好,但是对周期性不明显的轨迹预测精度较差。现有基于社交网络下一位置预测假设下一位置用户曾经访问过,下一位置仅仅从个人历史位置中选择,容易造成“冷启动”,导致常规位置预测良好,非常规位置预测精度较低。
综上所述,现有技术存在的问题是:现有基于GPS历史数据位置预测不包含语义信息,无法根据社交关系进行位置预测。现有的基于社交网络轨迹相似性位置预测存在运动轨迹预测相对复杂,开销较大,对周期性不明显的轨迹预测精度较差,容易造成“冷启动”。
发明内容
针对现有技术存在的问题,本发明提供了一种基于社交网络的位置预测系统及方法。
本发明是这样实现的,一种基于社交网络的位置预测方法,所述基于社交网络的位置预测方法包括以下步骤:
步骤一,爬取社交网络签到数据;
步骤二,对爬取的社交网络签到数据进行预处理,过滤掉签到次数小于平均签到次数的数据,清洗掉无效的数据,利用核平滑插值技术对签到数据的稀疏性进行处理;在f(x)中,若使用邻域样本的均值进行插值,则使f(x)不平滑,所以使用一个核函数对估计值平滑;具体使用核加权平均,公式为:
其中K(.)采用高斯核函数,可见,离x0越近的影响力越大,对应输出的权越大,符合签到数据的实际模拟;
步骤三,结合常规位置预测的输出概率Pr(loc)和非常规位置预测的输出概率Pu(loc),预测下一位置是否为常规位置;
步骤四,通过常规位置预测模块,得到top-m个位置列表;通过提取分析数据采集模块中采集的非结构化信息,应用于top-m位置列表,提高位置预测精度,得到top-k个位置列表,k<=m。
进一步,所述预测下一位置是否为常规位置公式为:
P(loc)=λPr(loc)+(1-λ)Pu(loc)。
其中Pr(loc)为常规位置预测概率,Pu(loc)为非常规位置预测概率,λ为调节参数,λ∈{0,1}。
进一步,所述常规位置预测采用MHMM算法,HMM结合时间特征和空间特征对位置进行预测。不考虑时间和空间的影响,给定相同的观测序列,HMM总是得到相同的预测结果;考虑到社交用户的签到行为受到时间和空间的影响,选用混合HMM算法对下一位置进行预测。
其中Ct+1为t+1时刻的位置类别,St为t时刻的观察序列状态,为时间空间向量。
进一步,所述非常规位置预测结合构建知识图谱,挖掘社交关系,采用融合社交关系的马尔科夫模型结合位置推荐系统对非常规位置进行预测。利用签到数据集构建知识图谱,在知识图谱上进行推理,挖掘相似用户,基于历史签到数据并融合相似用户训练一个马尔科夫模型对下一位置进行预测。最后将马尔科夫模型和位置推荐系统结合在一起,提高位置预测精度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710488445.2/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种竹节纱窗帘连接装置
- 下一篇:一种挡光篷布片