[发明专利]一种基于有功功率波动性的洗衣机运行非侵入辨识方法有效
申请号: | 201710432926.1 | 申请日: | 2017-06-09 |
公开(公告)号: | CN107356827B | 公开(公告)日: | 2019-10-11 |
发明(设计)人: | 周赣;张亮;李琦;冯燕钧;傅萌 | 申请(专利权)人: | 东南大学 |
主分类号: | G01R31/00 | 分类号: | G01R31/00 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 张婧 |
地址: | 210018 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 有功功率 波动性 洗衣机 运行 侵入 辨识 方法 | ||
本发明公开了一种基于有功功率波动性的洗衣机运行非侵入辨识方法,该辨识方法包括如下步骤:在一定的采样频率范围内,对总电源进线的电压和电流进行采样,形成电压信号采样序列u和电流信号采样序列i,并计算平均功率序列P;对平均功率序列P构造一个大窗口W,该大窗口可以划分为m个均匀的小窗口wk每个小窗口包含n个离散有功功率点;求取大窗口内小窗口wk最大值与最小值的差值,定义为极差Dk,给定阈值D0,统计大窗口W内满足Dk>D0的小窗口个数M;如果M>m/2,则定义该大窗口为波动窗口;统计连续3个大窗口,如果有两个大窗口为波动窗口,则判断洗衣机运行。本发明大大提高了洗衣机辨识度和准确度。
技术领域
本发明属于智能用电技术领域,尤其涉及一种基于有功功率波动性的洗衣机运行非侵入辨识方法。
背景技术
居民电力负荷监测分解技术是一门新兴的智能电网基础支撑技术,与目前智能电表仅量测用户总功率不同,它以监测并分解出居民户内所有电器的启动时间、工作状态、能耗情况为目标,从而实现更加可靠、精确的电能量管理。电力负荷监测分解技术使用户的电费清单像电话费清单一样,各类家用电器的用电量一目了然,从而使用户及时了解自己的用电情况,为合理分配各个电器的用电时间及相应的用电量提供参考,最终能够有效减少电费支出和电能浪费。Google统计数据显示,如果家庭用户能够及时了解住宅电器的详细用电信息,就能使每月电费开支下降5%~15%。如果全美国有一半家庭每个月节省这么多开支,减少的碳排放量相当于减少800万辆汽车的使用。对于工业用户而言,其负荷投切安排一般是比较固定的,只需分时计量即可,对负荷分解的需求较少,本项目的主要研究对象是住宅用电负荷。
目前,居民电力负荷监测分解技术主要分为侵入式监测分解(Intrusive LoadMonitoring and decomposition,ILMD)和非侵入式监测分解(Non-intrusive LoadMonitoring and decomposition,NILMD)两大类:
(1)侵入式负荷监测分解技术(ILMD):侵入式负荷监测将带有数字通信功能的传感器安装在每个电器与电网的接口,可以准确监测每个负荷的运行状态和功率消耗。但大量安装监测传感器造成建设和维护的成本较高,最重要的是侵入式负荷监测需要进入居民家中进行安装调试,容易造成用户抵制心理。
(2)非侵入式负荷监测分解技术(NILMD):仅在用户入口处安装一个传感器,通过采集和分析入口总电流、电压等信息来判断户内每个或每类电器的用电功率和工作状态(例如,空调具有制冷、制热、待机等不同工作状态),从而得出居民的用电规律。和侵入式负荷分解相比,由于只需要安装一个监测传感器,非侵入负荷分解方案的建设成本和后期维护难度都大幅降低;另外,传感器安装位置可以选择在用户电表箱处,完全不会侵入居民户内进行施工。可以认为,NILMD以分解算法代替ILMD系统的传感器网络,具有简单、经济、可靠、数据完整和易于迅速推广应用等优势,有望发展成为高级量测体系(AMI)中新一代核心技术(成熟后,NILMD算法也可以融合到智能电表的芯片内),支持需求侧管理、定制电力等智能用电的高级功能,也适用于临时性的负荷用电细节监测与调查。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710432926.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:用于电磁脉冲多端口效应评估的多通道探测系统
- 下一篇:变压器变比模拟实训装置