[发明专利]一种基于前导分析和因素补偿的售电量预测方法及装置在审
申请号: | 201710378514.4 | 申请日: | 2017-05-25 |
公开(公告)号: | CN107220764A | 公开(公告)日: | 2017-09-29 |
发明(设计)人: | 陈雨泽;赵加奎;刘建;方学民;欧阳红;方红旺;朱平飞;袁葆;刘玉玺;王树龙;卢耀宗 | 申请(专利权)人: | 北京中电普华信息技术有限公司;国网信息通信产业集团有限公司;国家电网公司 |
主分类号: | G06Q10/06 | 分类号: | G06Q10/06;G06Q50/06 |
代理公司: | 北京集佳知识产权代理有限公司11227 | 代理人: | 王宝筠 |
地址: | 100192 北京市海*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 前导 分析 因素 补偿 电量 预测 方法 装置 | ||
技术领域
本发明涉及电力领域,尤其涉及一种基于前导分析和因素补偿的售电量预测方法及装置。
背景技术
售电量预测是国家电网公司一项重要的基础性工作,月度售电量预测对于国家电网公司合理的确定销售电量总定额、分解售电量销售指标、制定有序用电方案、指导发电厂和输配电网的合理运行、推动电力市场发展和建设都具有十分重要的意义。
一般传统的售电量预测方法主要分为直接预测方法和分解预测方法,直接预测方法是指利用一种预测方法直接对售电量进行预测,主要包括灰度系统预测法、时间序列预测法、回归分析预测法。分解预测方法是指对售电量历史数据进行分解,分解成不同子序列,然后对各子序列分别预测并重构。这些方法在一定程度上能够对售电量进行预测,但是这些方法都没有考虑前导因素,无法识别售电量趋势变化的“拐点”;并且未考虑春节对售电量趋势变化的影响,因此得到的预测精度不理想。
发明内容
有鉴于此,本发明实施例公开了一种基于前导分析和因素补偿的售电量预测方法及装置,解决了现有技术中没有考虑前导因素春节因素从而使得预测精度不够的问题。
本发明实施例提供的一种基于前导分析和因素补偿的售电量预测方法,所述方法可以包括:
对历史售电量数据进行预处理,得到预处理后的历史售电量数据,并依据X13季节调整方法将所述预处理后的历史售电量数据分解为趋势项、季节项和随机项三个序列;
获取影响所述趋势项的相关指标,并依据所述趋势项、影响所述趋势项的相关指标以及预设的多种第一机器学习算法建立多个趋势项预测模型,并依据所述多个趋势项预测模型计算待预测时间售电量的趋势项预测值;所述趋势项预测值为多个;所述影响所述趋势项的相关指标包括:前导性指标和即时性指标;或者包括前导性指标;
基于所述季节项和预设的第二机器学习算法建立所述季节项预测模型,并依据所述季节项预测模型计算所述待预测时间售电量的季节项预测值;
依据所述随机项、春节因素和预设的随机项因素,采用预设的剥离和补偿规则以及预设的第三机器学习算法建立随机项的预测模型,并依据所述随机项的预测模型计算待预测时间售电量的随机项预测值;
将所述多个趋势项预测值、季节项预测值和随机项预测值进行加和重构,得到第一售电量预测值;
依据层次分析法AHP对所述第一售电量进行择优处理,得到待预测时间的第二售电量预测值。
可选的,所述前导性指标包括以下指标中的一个或者多个;
前导性指标:业扩净增容量、制造业PMI、非制造业PMI;
所述即时性指标包括以下即时性指标中的一个或者多个:
即时性指标:人均可支配收入、第二产业GDP增速、第三产业GDP增速和工业增加值增速。
可选的,依据所述趋势项、影响所述趋势项的相关指标以及预设的多种第一机器学习算法建立多个趋势项预测模型,并依据所述多个趋势项预测模型计算待预测时间售电量的趋势项预测值,包括:
若获取到了多个影响所述趋势项的相关指标,采用主成分分析法PCA计算所述多个影响所述趋势项的相关指标的去相关结果;
依据所述趋势项、所述去相关结果和预设的多个第一机器学习算法建立多个趋势项预测模型,并依据所述多个趋势项预测模型计算待预测时间售电量的趋势项的预测值。
可选的,所述基于所述季节项和预设的第二机器学习算法建立所述季节项预测模型,并依据所述季节项预测模型计算所述待预测时间售电量的季节项预测值,包括:
基于季节项和L1/2稀疏迭代算法建立所述季节项预测模型,并依据所述季节项预测模型计算所述待预测时间售电量的季节项预测值。
可选的,所述依据所述随机项、春节因素和预设的随机项因素,采用预设的剥离和补偿规则以及预设的第三机器学习算法建立随机项的预测模型,并依据所述随机项的预测模型计算待预测时间售电量的随机项预测值,包括:
采用移动假日剥离算法剥离所述随机项中的春节因素,得到剥离春节因素的随机项;
采用箱线图法从所述剥离春节因素的随机项中获取异常月份;依据逻辑回归算法和所述异常月份的异常数据建立异常判断模型;其中,所述异常数据包括:异常月份的温度、节假日和异常售电量情况;
基于所述异常判断模型和预设的随机因素判断所述待预测时间是否异常;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京中电普华信息技术有限公司;国网信息通信产业集团有限公司;国家电网公司,未经北京中电普华信息技术有限公司;国网信息通信产业集团有限公司;国家电网公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710378514.4/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种应用于潜水泵的水下过滤器
- 下一篇:电动蒲扇
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理