[发明专利]一种基于自适应卡尔曼滤波的行人航向最优融合方法有效

专利信息
申请号: 201710022551.1 申请日: 2017-01-12
公开(公告)号: CN106767789B 公开(公告)日: 2019-12-24
发明(设计)人: 黄欣;熊智;许建新;徐丽敏;孔雪博;赵宣懿;万众;李一博 申请(专利权)人: 南京航空航天大学
主分类号: G01C21/16 分类号: G01C21/16
代理公司: 32200 南京经纬专利商标代理有限公司 代理人: 许方
地址: 210017 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 自适应 卡尔 滤波 行人 航向 最优 融合 方法
【权利要求书】:

1.一种基于自适应卡尔曼滤波的行人航向最优融合方法,其特征在于,包括如下步骤:

步骤1,首先建立自适应卡尔曼滤波状态方程,选用“东北天”地理坐标系,构建9阶状态模型,如下式所示

其中为东向平台角误差;为北向平台角误差;为天向平台角误差;εbx为x轴陀螺随机常数;εby为y轴陀螺随机常数;εbz为z轴陀螺随机常数;εrx为x轴陀螺一阶马尔科夫过程;εry为y轴陀螺一阶马尔科夫过程;εrz为z轴陀螺一阶马尔科夫过程;W为系统随机过程噪声序列;A为系统矩阵;G为系统噪声矩阵;W为系统噪声序列;X为状态量;为状态量导数;wgx为x轴随机白噪声驱动;wgy为y轴随机白噪声驱动;wgz为z轴随机白噪声驱动;wrx为x轴马尔科夫白噪声驱动;wry为y轴马尔科夫白噪声驱动;wrz为z轴马尔科夫白噪声驱动;

步骤2,在步骤1自适应卡尔曼滤波状态方程建立好的基础之上,开始导航;利用陀螺仪每0.005秒采集一次数据,经误差修正后,通过四元素解算得出当前捷联航向角,利用误差修正后的磁传感器信息解算出当前磁航向角;

步骤3,在步骤2的基础上,判断当前解算时间是否达到1秒,无则返回步骤2,有则进行步骤4;

步骤4,在步骤3的基础上,研究利用磁传感器实时统计信息进行磁异常辨识,再利用二维椭圆标定算法修正磁传感器信息之后,按照下式构造磁异常辨识模型

上式代表第k时刻的磁环境辨识情况,其中,σ3为第一种磁异常判别参数;σ4为第二种磁异常判别参数;var()代表方差函数;min()代表求取最小值函数,mag1为第一个时刻总磁场强度;代表窗口大小为N的滑动数组;N为数组大小;

数组存储总磁场强度并实时更新,总磁场强度如下式所示,由三轴磁传感器测量值的平方和开根号组成

其中:magi为第i时刻总磁场强度;magix为x轴磁场强度;magiy为y轴磁场强度;magiz为z轴磁场强度;

步骤5:在步骤4的基础上,进行自适应卡尔曼滤波量测建模,构建一维量测模型,量测周期为1秒,量测方程如下式所示:

其中,为捷联解算出的航向角;为磁航向角;为姿态误差角;为航向噪声;Hv(t)为量测矩阵;X(t)为第t时刻状态量;Vv(t)为量测噪声;磁航向角解算公式如下式所示,其中X、Y分别为前向和横侧向所测量得到的磁信息

姿态误差角与平台误差角存在如下关系:

其中,θ为俯仰角,φx、φy、φy为三个平台误差角;因此:

同时利用步骤4的结果,依据下式对卡尔曼滤波器量测噪声阵Vv(t)进行修正

其中λ为设定的经验值;η为事先人为设定的增益常量;ε3与ε4为通过统计学方法获得的参数值,即在磁正常环境下由式(2)获得的均值;

步骤6:在步骤5的基础上,利用上述自适应卡尔曼滤波器对组合航向角进行修正,同时将陀螺估计误差反馈给陀螺误差修正模型,并返回步骤2。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710022551.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top