[发明专利]基于手机位置时空转移概率的基站服务人数时序预测方法有效
申请号: | 201611104833.8 | 申请日: | 2016-12-05 |
公开(公告)号: | CN106792517B | 公开(公告)日: | 2019-05-24 |
发明(设计)人: | 方志祥;倪雅倩;张韬;冯明翔 | 申请(专利权)人: | 武汉大学 |
主分类号: | H04W4/021 | 分类号: | H04W4/021;H04W4/029;G06Q10/04 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 魏波 |
地址: | 430072 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 手机 位置 时空 转移 概率 基站 服务 人数 时序 预测 方法 | ||
本发明公开了一种基于手机位置时空转移概率的基站服务人数时序预测方法,利用手机时空轨迹数据计算相等时间段内手机基站服务区域内的人数总量;利用手机时空轨迹数据,将人群移动轨迹进行分割,计算研究区域中,计算相邻时间段内各个基站之间来往的人数;基于贝叶斯以及马尔科夫链的相关理论,根据历史数据,计算当前时刻目标基站内手机用户在下一时刻内出现在各个基站的转移概率;计算不同时间段间,每个目标基站范围内手机用户向各个基站的转移概率,从而构建出研究区域内完整的时空转移概率矩阵;利用完整的时空转移概率矩阵能,预测人群总数相对稳定的研究区域内手机基站范围内服务人数;本发明数据获取成本较低,模型结构简单,预测效率高。
技术领域
本发明属于人口预测技术领域,涉及一种区域动态人口数量的预测方法,具体涉及一种基于手机位置时空转移概率的基站服务人数时序预测方法。
技术背景
比较在大范围开放区域人口预测方面的两种传统方法,都是基于时间序列相关理论演化而来的,第一种方法是移动平均法,另一种是ARIMA方法。前者根据时间序列,逐项推移,依次计算包含一定项数的序时平均数,以此进行预测的方法,但是移动平均法没有考虑空间因素对人群移动行为的影响,此外突发事件也会对预测结果产生比较大的影响;第二种方法,是基于ARIMA模型,对人口数量进行预测,但是该方法中的一个前提假设是研究范围内的人口总数保持稳定,而实际上城市内人口流动性较大,无法保证研究区域的人数处于相对稳定的状态,因此这种方法也难以对区域内不同时间段内的人群数量进行准确的预测。
发明内容
为了解决上述技术问题,本发明考虑人群移动特点,结合贝叶斯定理和马尔科夫链的特征,提出了一种针对手机基站服务范围内手机用户人数的预测方法。
本发明所采用的技术方案是:一种基于手机位置时空转移概率的基站服务人数时序预测方法,其特征在于,包括以下步骤:
步骤1:利用手机时空轨迹数据计算相等时间段内手机基站服务区域内的人数总量;
步骤2:利用手机时空轨迹数据,将人群移动轨迹进行分割,计算研究区域相邻时间段内各个基站之间来往的人数;
步骤3:基于贝叶斯以及马尔科夫链的相关理论,根据历史数据,计算当前时刻目标基站内手机用户在下一时刻内出现在各个基站的转移概率;
步骤4:计算不同时间段间,每个目标基站范围内手机用户向各个基站的转移概率,从而构建出研究区域内完整的时空转移概率矩阵;
步骤5:利用完整的时空转移概率矩阵,预测人群总数相对稳定的研究区域内手机基站范围内服务人数。
本发明根据当前时段每个手机基站范围内用户数量预测下一时段各个基站的服务范围内手机用户数量。该方法为城市内通讯资源的配置、人群移动预测预警提供了一种更加准确有效的解决方案。与传统的区域内人数预测方法相比,该方法具有两大突出优势:考虑区域间人群流动的时空特性;考虑研究区域内手机用户数的动态变化。为了使预测结果更加贴近实际情况,提升预测的准确程度和稳定性,在马尔科夫链以及贝叶斯定理的理论支撑下,方法尝试充分利用海量手机用户位置数据,结合贝叶斯定理和马尔科夫链的无后效性,从群体角度提出一种的基于手机位置时空转移概率的基站服务人数预测方法。为解决原始模型中有关研究区域内人口总数保持稳定的条件与城市人口总数动态变化不相符合的实际情况,方法结合历史数据,利用当前时段各个基站范围内用户总数对下一时段人口总数进行预测,并对变化的用户数进行动态分配,从而优化原有的预测方法。因此,本发明具有如下优点:数据获取成本较低,模型结构简单,预测准确率能够达到95%以上,在实际的生产生活中有很强的使用价值。
附图说明
附图1:是本发明实施例的完整流程。
附图2:是本发明实施例所涉及到区域人群预测方法与移动平均法和Castro方法在准确率方面的比较。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611104833.8/2.html,转载请声明来源钻瓜专利网。