[发明专利]一种面向电子商务的用户首次购数据整合方法及装置有效

专利信息
申请号: 201610969936.4 申请日: 2016-10-28
公开(公告)号: CN108021588B 公开(公告)日: 2021-05-25
发明(设计)人: 阎开品 申请(专利权)人: 北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司
主分类号: G06F16/28 分类号: G06F16/28;G06F16/2458;G06Q30/06
代理公司: 中原信达知识产权代理有限责任公司 11219 代理人: 张一军;姜劲
地址: 100195 北京市海淀区杏石口路6*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 面向 电子商务 用户 首次 数据 整合 方法 装置
【说明书】:

发明提供一种面向电子商务的用户首次购数据整合方法及装置,该方法包括:从订单模型和订单明细模型中选择与用户首次购信息相关的筛选信息,生成精缩订单表和/或精缩订单明细表数据;根据精缩订单表和精缩订单明细表数据,将用户属性和订单信息进行拼接,建立用户首次购模型,该用户首次购模型包括订单级用户首次购模型和订单明细级用户首次购模型,对订单级用户首次购模型和订单明细级用户首次购模型进行数据拆分,分别生成静态数据和动态数据,动态数据的更新方式为全量更新,动态数据根据设定条件转移至静态数据。本发明在满足对首次购买数据的统计需求的前提下,实现了对首次购数据模型的整合,降低统计模型的维护成本和风险。

技术领域

本发明涉及数据分析及计算机软件领域,具体涉及一种面向电子商务的用户首次购数据整合方法及装置。

背景技术

伴随着电子商务的不断发展,用户的行为和购买数据在不断地快速积累。用户首次下单的相关数据(即用户首次购)的分析和挖掘,在购买数据分析中占有绝对重要的地位。

由于首次购买数据需求复杂多样,如:全站范围的用户首次购,各渠道用户首次购,去恶意订单后的首次购,去风险用户首次购等。因为用户首次购的相关信息,需要系统对所有用户的全部订单数据进行遍历,对于大型电商公司来说,这会对仓库的资源或性能带来挑战。

现有技术中是通过数据抽取工具,将线上数据抽取到数据仓库中,然后通过模型搭建来满足数据业务需求。然后,根据业务方数据需求的不同分别设计多个模型来逐一满足。例如:

(1)按不同渠道划分的用户首次购模型,即一个用户每个渠道的首次购订单信息为一条记录,这样一个用户有几个渠道下单就有几条记录;

(2)按用户划分的用户首次购模型,即一个用户所有下单中的首次购订单信息为一条记录,这样一个用户仅一条记录;

(3)按用户一级品类划分的首次购模型,即一个用户每个一级品类首次购订单信息为一条记录,这样一个用户在不同的一级品类下过单,就有几条记录;

(4)按用户去恶意订单后的首次购模型,即一个用户所有下单中,去掉恶意订单的首次购订单。这样一个用户仅有一条记录。

由于类似上述不同的首次购业务需求还有很多,如果分别满足不同的业务数据需求,那么需要设计并构建多个相似的模型。这样的话,多个全量扫描订单的表执行起来会对集群产生较大压力,并且在后期维护时,对同一个口径的修改需要修改多个底层脚本。对于大量级的数据存储,大多进行增量或全量加工,这将对抽取和加工产生较大压力,未来发展到一定阶段,这种方式必然将产生数据处理瓶颈。

通过现有技术的方法来处理用户首次购数据的需求,会产生如下情况:

(1)集群压力大:如果同样是用户首次购数据,若存在多个相似的模型,那就要对订单全量数据进行多次扫描,集群压力会非常大。

(2)后期维护成本高:如果一个共有指标同时存在于较多模型中,在将来对该指标的加工口径进行调整时就需要维护多个模型,成本高,风险大;

(3)直接根据订单GDM层模型进行加工,其实用户首次购并不需要这么多指标,加工时带着大量无用指标必然会影响加工效率;

(4)需要根据业务场景建立较多首次购相关的模型,模型量大、口径不统一、划分角度不统一。

发明内容

有鉴于此,本发明的目的是提供一种面向电子商务的用户首次购数据整合方法及装置,在满足大多数对首次购买数据的统计需求的前提下,以实现对首次购数据模型的整合,进而降低统计模型的维护成本和风险。

本发明的技术方案是提供一种面向电子商务的用户首次购数据整合方法,所述方法包括:

从订单模型和订单明细模型中选择与用户首次购信息相关的筛选信息,生成精缩订单表和精缩订单明细表数据;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司,未经北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610969936.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top