[发明专利]一种人机会话满意度预测方法及系统有效
申请号: | 201510086568.4 | 申请日: | 2015-02-17 |
公开(公告)号: | CN104750674B | 公开(公告)日: | 2018-12-21 |
发明(设计)人: | 罗欢;李杰;汤鹏飞;王智 | 申请(专利权)人: | 北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司 |
主分类号: | G06F17/27 | 分类号: | G06F17/27 |
代理公司: | 北京邦信阳专利商标代理有限公司 11012 | 代理人: | 金玺 |
地址: | 100080 北京市海淀区杏石口路6*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 人机 会话 满意 预测 方法 系统 | ||
本发明公开一种人机会话满意度预测方法及系统,方法包括:获取多个训练人机会话的满意度训练数据;以训练人机会话的会话特征作为训练样本,以对应的满意度结果作为目标值进行分类模型训练,得到分类模型;获取实际人机会话,提取所述实际人机会话的会话特征,将所述实际人机会话的会话特征输入所述分类模型得到经过分类模型预测的满意度结果。本发明在预测满意度时,可以很容易添加或删除影响预测的会话特征,并且通过统计方式,不再需要直接考虑各个特征具体需要设定的权重,而只需要选择合适的分类模型,利用分类模型对训练样本的学习,自动完成权重设定。
技术领域
本发明涉及人机会话相关技术领域特别是一种人机会话满意度预测方法及系统。
背景技术
问答系统是能够识别用户输入的自然语言文本语句,并做出相应回答的计算机程序。它通过对用户输入语句的处理分析,最终执行用户请求,返回用户关心的信息,其中包含语句分词、实体识别、语义识别、任务处理及应答等自然语言处理相关技术。
问答系统中,回答的精准性,实时性,惊喜性等都是比较重要的指标,而提高这些性能的最终目的都是为了服务于客户,让顾客满意度。为了更好的服务于客服,需要知道什么样的用户在什么情况下能够满意度,这样就能有针对性的对可能不满意度的客户进行额外的操作。
现有的满意度预测主要是通过人工制定规则方式进行预测,比如用户问话里出现负面情绪,则认为客户可能不满意度,又如客户以前是喜欢打满意度客服,则认为客户不会打不满意度等等,然后给各种方式制定权重,然后加权求出最后的满意度预测情况。
然而,通过制定规则,然后进行加权投票是一种比较原始的处理方式,需要大量的实验来调整各种规则的权重,如果规则种类过多,并且各自存在一定的关联时,人工处理复杂度会成倍的增长,也不易维护;一些对满意度不是直接影响的规则,也不容易处理。
发明内容
基于此,有必要针对现有技术对与客户的满意度预测较为复杂的技术问题,提供一种人机会话满意度预测方法及系统。
一种人机会话满意度预测方法,包括:
训练数据收集步骤,包括:获取多个训练人机会话的满意度训练数据,每个所述满意度训练数据包括用户关于该次训练人机会话的满意度结果以及在该次训练人机会话中所提取的会话特征;
语料训练步骤,包括:以训练人机会话的会话特征作为训练样本,以对应的满意度结果作为目标值进行分类模型训练,得到分类模型,所述分类模型将作为训练样本的会话特征与作为目标值的满意度结果进行归类关联;
满意度预测步骤,包括:获取实际人机会话,提取所述实际人机会话的会话特征,将所述实际人机会话的会话特征输入所述分类模型得到经过分类模型预测的满意度结果。
一种人机会话满意度预测系统,包括:
训练数据收集模块,用于:获取多个训练人机会话的满意度训练数据,每个所述满意度训练数据包括用户关于该次训练人机会话的满意度结果以及在该次训练人机会话中所提取的会话特征;
语料训练模块,用于:以训练人机会话的会话特征作为训练样本,以对应的满意度结果作为目标值进行分类模型训练,得到分类模型,所述分类模型将作为训练样本的会话特征与作为目标值的满意度结果进行归类关联;
满意度预测模块,用于:获取实际人机会话,提取所述实际人机会话的会话特征,将所述实际人机会话的会话特征输入所述分类模型得到经过分类模型预测的满意度结果。
本发明通过对分类模型进行训练,采用分类模型对实际人机会话进行满意度预测,在预测满意度时,可以很容易添加或删除影响预测的会话特征,并且通过统计方式,不再需要直接考虑各个特征具体需要设定的权重,而只需要选择合适的分类模型,利用分类模型对训练样本的学习,自动完成权重设定。
附图说明
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司,未经北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510086568.4/2.html,转载请声明来源钻瓜专利网。