[发明专利]基于改进BP神经网络的电厂设备的状态监测方法有效
申请号: | 201410747579.8 | 申请日: | 2014-12-09 |
公开(公告)号: | CN104503235A | 公开(公告)日: | 2015-04-08 |
发明(设计)人: | 龚安;高洪福;张建;高云 | 申请(专利权)人: | 中国石油大学(华东) |
主分类号: | G05B13/04 | 分类号: | G05B13/04;G06N3/02 |
代理公司: | 无 | 代理人: | 无 |
地址: | 266580山东省青岛*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 改进 bp 神经网络 电厂 设备 状态 监测 方法 | ||
技术领域
本发明涉及一种电厂设备的状态监测方法,尤其涉及一种基于改进BP神经网络的电厂设备的状态监测方法。
背景技术
由于电厂设备的工作状态变化没有规律性,很难使用现有的数学模型对其进行拟合估计。神经网络具有优秀的非线性拟合能力,适合对复杂的工作状态进行拟合,但是它容易陷入局部最优解,每次拟合结果可能不尽相同,遗传算法可以处理任意形式的目标函数和约束,具有良好的全局寻优能力以及较快的收敛速度,然而遗传算法也存在早熟的现象。
电厂设备的工作状态直接影响了电厂的工作运行,对电厂设备进行检测已成为电厂研究的重要问题。如上述提到各种方法有诸多的缺陷问题,因此,现在需要发明一种方法,在解决遗传算法早熟问题的同时提高算法收敛到全局最优解速度,以此来满足电厂设备工况数据的精确性和实时性的要求。
发明内容
针对遗传算法早熟问题以及神经网络容易陷入局部最优解的局限性问题,本发明研制一种基于改进BP神经网络的电厂设备的状态监测方法。
本发明其特征在于,包括以下步骤:
(1)采集电厂数据(包括历史数据和实时数据)作为数据源进行种群初始化和个体迁移。
(2)数据源进行初始化后得到三个种群,对这三个种群采取不同的选择方式和交叉操作。
(3)防止取得的电厂数据种群陷入局部最优进行变异操作。
(4)当连续几代没有出现新的最优个体时,说明算法可能陷入局部最优,此时加入扩展机制,增强种群的多样性,使算法跳出局部最优解。
所述种群初始化和个体迁移是为了改善遗传算法早熟现象,引入多种群并提出一种新的个体迁移机制:初始创建三个随机种群,分别计算三个种群中个体的适应度值,根据个体适应度值将个体分为优中劣三个等级;个体迁移是指将每代的三个种群中的优秀个体放在第一个种群中,一般个体放入第二个种群,较差个体放入第三个种群;
所述选择是对于第一个种群,由于其存放的都是适应度值较大的优秀个体,将保留所有个体进入下一代种群;对于第二个种群,通过轮盘赌的方法以较大的选择概率选择个体进入下一代种群;对于第三个种群,同样通过轮盘赌的方法以较小的选择概率选择个体进入下一代种群。;
所述变异操作是第一个种群保存的是当代适应度值较大的优秀个体,因此对其进行小范围的变异,提高算法的局部搜索能力;第二个种群进行较大范围的变异,增加种群的多样性,避免陷入局部最优、产生早熟现象;第三个种群进行大范围的变异,以期产生多个新个体,增强种群多样性;
所述扩展机制是交叉操作不再仅限于三个种群各自内部进行,而是随机进行两个种群间的个体的交叉操作,以期产生新的最优个体,同时增大交叉概率和交叉个体的数目,增大个体变异概率和变异个体的数目。
附图说明
图1是基于改进BP神经网络的电厂设备的状态监测方法实施流程图。
图2是实时数据的趋势图。
图3是BP以及SGA对设备状态的监测图。
图4是IM-EMGA优化的BP对设备状态的监测图。
具体实施方式
为更好地理解本发明,下面结合附图和具体实施方式对本发明进行更为详细描述。在以下的描述中,当已有的现有技术的详细描述也许会淡化本发明的主题内容时,这些描述在这儿将被忽略。
图1是本发明基于改进BP神经网络的电厂设备的状态监测方法的一种具体实施方式流程图。在本实施例中,本发明的基于改进BP神经网络的电厂设备的状态监测方法包括以下步骤:
某电厂中采集到的设备的振动数据,其实时趋势如图2所示,其中横坐标表示时间(每隔一分钟获取一个数据)。
(1)将上述电厂数据作为数据源进行种群初始化和个体迁移。
(2)数据源进行初始化后得到三个种群,对这三个种群采取不同的选择方式和交叉操作。
(3)防止取得的电厂数据种群陷入局部最优进行变异操作。
(4)当连续几代没有出现新的最优个体时,说明算法可能陷入局部最优,此时加入扩展机制,增强种群的多样性,使算法跳出局部最优解。
将BP、SGA优化的BP以及IM-EMGA优化的BP分别应用于该段实时数据,测试结果如图3所示,左侧两张图为BP对电厂实时数据的两种监测结果,右侧两张图为SGA对电厂实时数据的两种监测结果,从图中可以看出,由于BP神经网络每次寻找到的最优解不尽相同,因此BP对相同实时数据的评估相差很大,同时结果一出现了过拟合现象,没有准确及时的发现异常数据。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油大学(华东);,未经中国石油大学(华东);许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410747579.8/2.html,转载请声明来源钻瓜专利网。