[发明专利]纳米材料TiO2改性CHILON及其制备方法无效
申请号: | 201210463791.2 | 申请日: | 2012-11-18 |
公开(公告)号: | CN102964813A | 公开(公告)日: | 2013-03-13 |
发明(设计)人: | 杨文光;孙克原;靳予;陈佩民 | 申请(专利权)人: | 南京肯特复合材料有限公司;南京肯特新材料有限公司 |
主分类号: | C08L77/00 | 分类号: | C08L77/00;C08K3/22 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙) 11350 | 代理人: | 汤东凤 |
地址: | 211162 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 纳米 材料 tio sub 改性 chilon 及其 制备 方法 | ||
1.一种纳米材料TiO2改性CHILON,其特征在于:由纳米材料TiO2改性CHILON二元复合构成,所述纳米材料TiO2与CHILON质量百分比为:1%-7%。
2.根据权利要求1所述的纳米材料TiO2改性CHILON,其特征在于:所述纳米材料TiO2与CHILON质量百分比分别为:1%、3%、5%或者7%。
3.一种纳米材料TiO2改性CHILON的制备方法,其特征在于依次包括以下步骤:
一次真空干燥:采用真空干燥箱对CHILON粉末进行真空干燥,真空干燥为温度为120℃,时间为2小时;
高速混合:采用高速混合机对CHILON粉末与TiO2粉末进行混料,以使CHILON粉末与TiO2粉末均匀共混;混料时选择6级转速,即1450r/min,混到均匀即可;所述TiO2和CHILON的质量百分比为1%-7%;
挤出造粒:使用双螺杆配混挤出机对经过高速混合步骤处理后的CHILON粉末与TiO2粉末的混合物料进行挤出造粒,形成挤出配料,再将挤出配料放在常温水中冷却至常温,然后将冷却后的挤出配料切粒,形成3毫米长左右的圆柱形颗粒物料;
二次真空干燥:使用真空干燥箱对颗粒物料进行真空干燥处理,真空干燥时温度为100℃,时间为24个小时;
注塑成型:采用常规注塑方法,将经过二次真空干燥处理后的颗粒物料制成符合要求的形状;注塑成型的射胶压力为135kg,射胶保压时间为50秒,储料压力为120kg,储料速度为60cm3/s,烘料温度为160℃,模温为180℃,射嘴温度为345℃;加热时一段温度为355℃,二段温度为355℃,三段温度为355℃,四段温度为330℃;保压压力为115kg;冷却时间为55秒。
4.根据权利要求3所述的纳米材料TiO2改性CHILON的制备方法,其特征在于:所述纳米材料TiO2与CHILON质量百分比分别为:1%、3%、5%或者7%。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京肯特复合材料有限公司;南京肯特新材料有限公司,未经南京肯特复合材料有限公司;南京肯特新材料有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210463791.2/1.html,转载请声明来源钻瓜专利网。
- 纳米TiO<sub>2</sub>复合水处理材料及其制备方法
- 具有TiO<sub>2</sub>致密层的光阳极的制备方法
- 一种TiO<sub>2</sub>纳米颗粒/TiO<sub>2</sub>纳米管阵列及其应用
- 基于TiO2的擦洗颗粒,以及制备和使用这样的基于TiO2的擦洗颗粒的方法
- 一种碳包覆的TiO<sub>2</sub>材料及其制备方法
- 一种应用于晶体硅太阳电池的Si/TiO<sub>x</sub>结构
- 应用TiO<sub>2</sub>光触媒载体净水装置及TiO<sub>2</sub>光触媒载体的制备方法
- 一种片状硅石/纳米TiO2复合材料及其制备方法
- TiO<base:Sub>2
- TiO
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法