[发明专利]基于小波低频的贝叶斯去噪方法有效

专利信息
申请号: 201110289985.0 申请日: 2011-09-27
公开(公告)号: CN102509260A 公开(公告)日: 2012-06-20
发明(设计)人: 钟桦;焦李成;韩超;张小华;王爽;王桂婷;侯彪 申请(专利权)人: 西安电子科技大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 陕西电子工业专利中心 61205 代理人: 田文英;王品华
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 低频 贝叶斯去噪 方法
【说明书】:

技术领域

本发明属于图像处理技术领域,更进一步涉及一种自然图像处理技术的滤波方法,该方法使用小波低频系数来描述贝叶斯去噪模型中的相似性权值,以贝叶斯非局部均值滤波为去噪模型,可用于对自然图像进行去噪处理。

背景技术

图像去噪的主要目的是解决实际图像由于噪声干扰导致的图像质量下降问题。通过去噪可以提高图像质量,增大信噪比,更好地体现图像所携带的信息,因此图像去噪技术在很多领域中都占据着重要的位置。

根据图像的特点和噪声的统计特征,多年来已经提出了很多的图像去噪方法,现有消除噪声即滤波的方法主要分为空域滤波和频域滤波。图像的空域滤波方法是直接对图像的灰度值做运算,图像频域滤波方法则是在某种变换域内对图像的变换系数进行运算,然后反变换回图像空域的。Buades等人提出了一种非局部均值的去噪方法,该方法以当前像素点为中心取一个大小一定的像素块,在整幅图像内寻找与其具有相似结构的像素块,以两个像素块之间的相似度为权值对当前像素点的灰度值进行调整。由于该方法在去噪领域具有良好的性能,自提出以来迅速引起众多学者的广泛关注。但该方法属于空域滤波方法,随着图像噪声的增大,噪声对相似性权值的干扰越来越大,导致该方法对高噪声图像的去噪效果不理想。

在西安电子科技大学申请的“基于shearlet域非局部均值的自然图像去噪方法”的专利(申请号为201010252202.7,公开号为CN101930598A)中公开了一种基于shearlet域非局部均值的自然图像去噪方法。该方法利用拉普拉斯金字塔方法将图像分解为3层,第一层采用非局部均值方法进行处理,第二、第三层先利用shearlet方向滤波器组分别分解成四组shearlet系数,再对每组shearlet系数进行β值的估计,之后,对各组shearlet系数进行广义高斯模型下的非局部均值方法的去噪处理;对去噪结果进行重构,得到最终去噪结果。该方法存在的不足是,由于使用了广义高斯模型,因此其可调参数非常多,不具有自适应性,而且此方法只对高噪声的图像有明显的去噪效果,对低噪声的图像效果一般。

在西安电子科技大学申请的“基于Treelet和非局部均值的图像去噪”的专利(申请号为201110001952.1,公开号为CN102063708A)中公开了一种基于Treelet和非局部均值的图像去噪方法。该方法通过计算图像的协方差矩阵,在对协方差矩阵做Treelet变换,得到尺度向量,再对图像逐像素取滑窗与尺度向量相乘,得到特征向量函数,由特征向量函数对图像逐像素滤波,得到去噪图像。该方法存在的不足是,此方法的处理过程过于复杂,并且无法保证特征向量函数的准确性,不能在较好平滑噪声的同时保持和恢复自然图像的边缘和纹理细节。该方法同样只对高噪声的图像有明显的去噪效果,对低噪声的图像效果一般。

发明内容

本发明的目的在于克服现有技术的不足,用小波低频系数描述贝叶斯去噪模型中的相似性权值,根据贝叶斯非局部均值滤波框架,提出了一种基于小波低频的贝叶斯去噪方法,以实现对自然图像去噪中纹理和平滑区域的兼顾,提高图像去噪效果。

本发明的具体步骤包括如下:

(1)输入一幅待去噪的自然图像;

(2)选取待估计像素块

在待去噪的自然图像中,逐行扫描选取一个像素点为待估计像素点,以待估计像素点为中心,以固定长度为块半径,选取一个正方形的待估计像素块;

(3)选取中心低频系数块

将待去噪的自然图像进行db1小波分解,在其得到的低频图中对应于待去噪像素块的位置上,选取一个与待去噪像素块大小相同的低频系数块,以此低频系数块作为中心低频系数块;

(4)确定搜索窗

在低频图上,以选取的中心低频系数块的中心系数为中心,以固定长度为搜索窗半径,选取一个正方形的搜索窗;

(5)选取低频系数块

在搜索窗中选取一个没被选取过的低频系数,以此低频系数为中心,确定一个与中心低频系数块等大小的低频系数块;

(6)判断是否满足约束条件

判断低频系数块是否同时满足均值约束条件和方差约束条件,若满足,则进行下一步骤,否则执行步骤(5);

(7)计算相似性权值

按照下式计算相似性权值:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201110289985.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top