[发明专利]基于互联网图像的三维模型最佳视角自动获取方法无效
申请号: | 201110089940.9 | 申请日: | 2011-04-11 |
公开(公告)号: | CN102163343A | 公开(公告)日: | 2011-08-24 |
发明(设计)人: | 黄华;张磊;刘洪 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06T19/00 | 分类号: | G06T19/00;G06T15/10 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 陆万寿 |
地址: | 710049 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 互联网 图像 三维 模型 最佳 视角 自动 获取 方法 | ||
技术领域
本发明涉及一种计算机图像处理方法,具体涉及一种基于互联网图像的三维模型最佳视角自动获取方法。
背景技术
给定一个三维模型,从不同的角度对其进行观察时,由于承载了该三维模型的不同方向的视觉信息,可能会展现出完全不同的表现形式。寻找最佳视角的本质是找出一个承载最大信息量的视点,该视点有利于人们更加深入地去观察和了解给定的三维模型。近年来,最佳视角问题得到了学术界的广泛研究,并应用到很多实际问题中,如形状识别和分类、三维模型视图编辑、基于图像的渲染、三维模型搜索等。
对于什么样的视角是最佳视角这一问题,现在还没有一个权威的定义。在研究最佳视角问题时,人们通常根据自己所面对的实际应用去进行定义。通过研究计算机图形心理学,Blanz等人提出了决定最佳视角的四个属性:利于识别、熟悉度、能用函数表示以及审美标准,并且最佳视角在很大程度上受三维模型的几何特性影响(Blanz,V.,etal.,What object attributes determine canonical views?PERCEPTION-LONDON-,1999.28:p.575-600.)。结合这些研究成果,最佳视角常被定义为能为人们提供该模型最多可视化信息的视角。其中,可视化信息可以进一步表现为曲率、拓扑或者轮廓熵等描述符,且最佳视角就是尽可能多地使这些描述符可见。尽管这些描述符对于某些模型来说可以很好地展示出其特征,但是,还不能证实这些信息可以完全代表人类的感知。而且,在现实生活中,也常常会遇到一些这些描述符处理出错的例子,如面对一台电视机,其背面的曲率特征明显强于前面,而对我们来说,其最佳视点却存在于前方。
最佳视角一定是当人们面对一个物体时,绝大多数人倾向选择的视角。很明显,对于给定的模型,不能逐个询问全人类他们心目中的最佳视角。然而,互联网给了人们一个分享自己所拍照片的平台。近年来软、硬件技术的高速发展,也使互联网逐步深入人们的日常生活。随着人们不断在网络上分享自己拍摄的照片,互联网已经成为一个海量的图像数据库。例如,在著名的图像分享网站Flickr上,如今共享的图像量已经超过了四十亿,而在google网页上,超过一百亿的图像可供人们检索。人们在拍摄自己感兴趣的物体时,通常会选择一个自认为很不错的角度,即最佳视角去进行拍摄,而且,所放在网络上共享的图像,更是选择的视角很满意的作品。网络数据量庞大,对于任意给定的模型,都可以通过网络轻松找到足量含有该模型的图像。
发明内容
本发明的目的在于提供一种基于互联网图像的三维模型最佳视角自动获取方法。
为达到上述目的,本发明采用的技术方案是:
一种基于互联网图像的三维模型最佳视角自动获取方法,包含以下步骤:
1)利用基于颜色对比度的图像特征提取方法,求取下载的网络图像的特征图;
2)输入三维模型求出三维模型表面各顶点的曲率,用以表征三维模型表面的形状特征即得到三维模型的表面形状特征的投影图;
3)基于三维模型的投影图像和网络图像的轮廓匹配的重合度,该重合度衡量两幅图像之间相互重合的程度,并通过求取两幅图像之间最大的重合程度,计算出表征图像之间轮廓相似程度的能量函数;
4)基于三维模型的投影图像和网络图像的轮廓形状的相似度,该相似度表征两幅图像之间图像形状的一致性,并依据该相似度求出表征形状相似性的能量函数;
5)基于三维模型的表面形状特征的投影图和下载的网络图像的特征图的细节特征的吻合度,该吻合度确认两幅图像的重合程度,依据该细节特征的吻合度,求出对应的特征能量函数;
6)根据三维模型的表面形状特征的投影图和下载的网络图像的特征图的相似程度,用统计的方法求取最佳视角,所述的相似程度是相似程度的能量函数、相似性的能量函数和特征能量函数叠加的结果。
所述的基于互联网图像的三维模型最佳视角自动获取方法,其具体的执行步骤如下:
步骤一:对于输入的三维模型M,在不同视角均匀地对其做平行投影,获取其投影图集P;
步骤二:用输入的三维模型M的关键字在网络上下载相关图像,并用graph cut算法分割出网络图像的前景,组成网络图集I;
步骤三:分别求出投影图集P和网络图集I中各图像的掩膜图;
步骤四:利用步骤三求取的掩膜图,首先将投影图像的掩模图和网络图像的掩模图的目标置于同一坐标系,并利用主成分分析算法对投影图像的掩模图和网络图像的掩模图的坐标进行调整,然后将两幅图像Ii和Pj的轮廓相似度定义为:
[式一]
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110089940.9/2.html,转载请声明来源钻瓜专利网。
- 上一篇:刻录工具的测试方法及系统、嵌入式设备
- 下一篇:水气可渗透的可伸缩布料
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序