[发明专利]一种基于卷积神经网络的SSVEP分类方法有效
申请号: | 202110349963.2 | 申请日: | 2021-03-31 |
公开(公告)号: | CN113052099B | 公开(公告)日: | 2022-05-03 |
发明(设计)人: | 姜小明;赵德春;王添;田媛媛;向富贵 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
代理公司: | 重庆辉腾律师事务所 50215 | 代理人: | 卢胜斌 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于数据处理领域,具体涉及一种基于卷积神经网络的SSVEP分类方法,该方法包括:将多通道SSVEP脑电数据通过滤波器组把时域的脑电数据分割为多个分别对应SSVEP刺激频率基波及谐波成分的频带;对分割后的数据进行快速傅里叶变换得到其对应的频谱数据;利用多路卷积神经网络分别对各个频带内的脑电频谱数据进行特征提取、学习和归类,最后进行分类;本发明利用SSVEP脑电信号中刺激目标所诱发的脑电电位存在着基波和各个谐波成分存在着互相关性的先验知识,使用时域滤波和快速傅里叶变换对脑电信号进行预处理提取出SSVEP信号的各个谐波成分并通过卷积神经网络来进行特征提取和分类,从而获得更高的分类准确率。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 ssvep 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110349963.2/,转载请声明来源钻瓜专利网。