[发明专利]基于深度学习的干旱指数监测方法及系统有效
申请号: | 202110283892.0 | 申请日: | 2021-03-17 |
公开(公告)号: | CN112668705B | 公开(公告)日: | 2021-06-29 |
发明(设计)人: | 俞乐;黄小猛;周峥 | 申请(专利权)人: | 清华大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08;G06K9/62;G01W1/10;G01N33/24 |
代理公司: | 北京鸿元知识产权代理有限公司 11327 | 代理人: | 王迎;袁文婷 |
地址: | 10008*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于深度学习的干旱指数监测方法及系统,其中的方法包括:获取监测站点的观测数据,并基于观测数据获取对应的各参数信息;对各参数信息分别进行数据处理,获取与各参数信息分别对应的预处理数据;对预处理数据以及与观测数据对应的辅助数据进行数据融合,并基于融合后的数据构建数据集;其中,数据集包括训练集和测试集;基于训练集和测试集训练并测试深度神经网络模型,直至深度神经网络模型收敛在预设范围内,形成干旱指数监测模型;基于干旱指数监测模型对待检测区域的干旱指数进行监测。利用上述发明能够更加综合、全面的识别旱情,提高旱情监测的准确性。 | ||
搜索关键词: | 基于 深度 学习 干旱 指数 监测 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110283892.0/,转载请声明来源钻瓜专利网。