[发明专利]一种基于强化时空图神经网络的交通预测方法有效

专利信息
申请号: 202011127925.4 申请日: 2020-10-20
公开(公告)号: CN112241814B 公开(公告)日: 2022-12-02
发明(设计)人: 周毅;胡姝婷;周丹阳;李伟;张延宇;杜晓玉 申请(专利权)人: 河南大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/30;G06N3/04;G06N3/08;G08G1/01
代理公司: 郑州联科专利事务所(普通合伙) 41104 代理人: 王聚才
地址: 475001*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于强化时空图神经网络的交通预测方法,基于序列到序列模型的交通预测框架,对道路网络的时间相关性、空间相关性进行建模,根据道路网络上下游关系将整个路网构建成一个有向加权图,通过扩散图卷积网络来捕获路网的空间相关性,提取路网的空间相关性特征,将带有空间相关性特征的时间序列输入到递归神经网络中捕获路网的时间相关性,然后通过强化学习中的actor‑critic算法在解码的过程中对预测结果进行优化,将每个时间片捕获的路网关系拓扑图看作智能体中的actor,将递归神经网络看作actor选择下一个动作的随机策略,并用critic对它选择的动作进行评判,并反馈一个优势函数,actor根据反馈的优势函数来更新策略参数,相比传统方法大大提高了预测精度。
搜索关键词: 一种 基于 强化 时空 神经网络 交通 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南大学,未经河南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011127925.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top