[发明专利]一种基于深度学习的自监督低照度图像增强方法有效
申请号: | 202010097457.4 | 申请日: | 2020-02-17 |
公开(公告)号: | CN111402145B | 公开(公告)日: | 2022-06-07 |
发明(设计)人: | 张雨;王春晖;遆晓光;董方洲 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00;G06T5/40;G06N3/04;G06N3/08 |
代理公司: | 哈尔滨市松花江专利商标事务所 23109 | 代理人: | 时起磊 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度学习的自监督低照度图像增强方法,属于数字图像处理领域。本发明为解决现有的低照度图像增强方法存在的效果差、泛化能力差的问题,以及现有深度学习方法中对低照度‑正常照度数据集依赖程度高等问题。本发明针对低照度图像增强网络,采集任意数量低照度图像数据,提取低照度图像的最大值通道图像做直方图均衡化;以直方图均衡化后最大值通道图像作为监督,结合Retinex理论和照度图像I平滑的假设构建损失函数,训练图像增强网络。本发明可以显著增强低照度图像的亮度、对比度,并保留图像的细节和颜色信息。本发明用于低照度图像的增强。 | ||
搜索关键词: | 一种 基于 深度 学习 监督 照度 图像 增强 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010097457.4/,转载请声明来源钻瓜专利网。
- 上一篇:防啸叫电声通话装置
- 下一篇:提高通信设备通信质量的方法、装置和通信设备