[发明专利]基于六阶B-样条小波神经网络的史密斯预估补偿方法有效

专利信息
申请号: 201911152256.3 申请日: 2019-11-22
公开(公告)号: CN110824922B 公开(公告)日: 2020-12-18
发明(设计)人: 张治国;施博文 申请(专利权)人: 电子科技大学
主分类号: G05B13/04 分类号: G05B13/04
代理公司: 成都立信专利事务所有限公司 51100 代理人: 冯忠亮
地址: 610054 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明为一种基于六阶B‑样条小波神经网络的史密斯预估补偿方法。解决史密斯预估器模型精度低,对干扰抑制不理想的问题。通过对被测对象建立微分方程并进行离散化处理,得到系统状态量的采样间隔与六阶B‑样条小波神经网络的学习样本,在确定神经网络结构、输入层权值和隐层函数、节点数后进行迭代训练得到输出层权值向量和神经网络表达式,从而得到史密斯预估补偿器的数学模型。本发明可对非线性被控对象建模,且能有效提高过程模型的精度,同时,小波神经网络频带有限的特点,使其对干扰的抑制效果理想。
搜索关键词: 基于 样条小波 神经网络 史密斯 预估 补偿 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911152256.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top