[发明专利]快速模型的训练方法、装置、计算机设备及存储介质在审
申请号: | 201811348231.6 | 申请日: | 2018-11-13 |
公开(公告)号: | CN109614989A | 公开(公告)日: | 2019-04-12 |
发明(设计)人: | 徐玲玲 | 申请(专利权)人: | 平安科技(深圳)有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 深圳市立智方成知识产权代理事务所(普通合伙) 44468 | 代理人: | 王增鑫 |
地址: | 518000 广东省深圳市福田区福*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例公开了一种快速模型的训练方法、装置、计算机设备及存储介质,包括:获取预设的训练样本图像;将所述训练样本图像输入到预设的辅助训练模型和初始的快速模型中;计算所述辅助训练模型提取的训练样本图像的特征向量与所述快速模型提取的训练样本图像的特征向量之间的特征距离;通过对所述特征距离进行反向传播,以校正所述快速模型中的权重参数。通过在对快速模型进行训练时,无需对参与训练的样本图像进行标记,节约了标记所需要的时间和花费的精力,提高了训练的速度。直接计算辅助模型输出的表征样本图像特征的特征向量,与快速模型输出的表征样本图像特征的特征向量之间的距离并进行反向传播,能够最大限度的缩短训练时间。 | ||
搜索关键词: | 快速模型 训练样本图像 特征向量 计算机设备 表征样本 存储介质 反向传播 特征距离 图像特征 训练模型 预设 辅助模型 权重参数 样本图像 直接计算 输出 校正 节约 | ||
【主权项】:
1.一种快速模型的训练方法,其特征在于,包括:获取预设的训练样本图像;将所述训练样本图像输入到预设的辅助训练模型和初始的快速模型中,其中,所述辅助训练模型为预先训练至收敛状态用于提取图像特征向量的神经网络模型,所述快速模型为待训练的神经网络模型;计算所述辅助训练模型提取的训练样本图像的特征向量与所述快速模型提取的训练样本图像的特征向量之间的特征距离;通过对所述特征距离进行反向传播,以校正所述快速模型中的权重参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811348231.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种生物识别方法及装置
- 下一篇:一种目标检测装置