[发明专利]基于深度学习的输变电设备红外图像温宽范围识别方法有效
申请号: | 201810495979.2 | 申请日: | 2018-05-22 |
公开(公告)号: | CN109376749B | 公开(公告)日: | 2021-03-19 |
发明(设计)人: | 林颖;秦佳峰;辜超;郭志红;白德盟;李程启;杨祎;张皓;李娜;朱梅;徐冉;张围围;王斌 | 申请(专利权)人: | 国网山东省电力公司电力科学研究院;国家电网公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/46;G06N3/08 |
代理公司: | 济南诚智商标专利事务所有限公司 37105 | 代理人: | 李修杰 |
地址: | 250002 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于深度学习的输变电设备红外图像温宽范围识别方法,所述方法包括:S1、截取红外图像待处理区域;S2、利用RPCA算法优化后续待提取数字区域;S3、对待提取数字区域做膨胀处理,形成连通区域,提取权重最高的连通区域;S4、通过二值化操作进行单独数字区域分割;S5、利用样本数据进行深度学习,并根据训练模型和分类器对分割后的数字区域进行识别;S6、合并识别结果。本发明解决了现有技术中由于图层信息缺失影响对设备故障的分析和诊断问题,实现对图层信息缺失的图像进行信息识别,提高准确度,方便对输变电设备进行故障分析和诊断。 | ||
搜索关键词: | 基于 深度 学习 变电 设备 红外 图像 范围 识别 方法 | ||
【主权项】:
1.基于深度学习的输变电设备红外图像温宽范围识别方法,其特征在于,包括以下步骤:S1、截取红外图像待处理区域;S2、利用RPCA算法优化后续待提取数字区域;S3、对待提取数字区域做膨胀处理,形成连通区域,提取权重最高的连通区域;S4、通过二值化操作进行单独数字区域分割;S5、利用样本数据进行深度学习,并根据训练模型和分类器对分割后的数字区域进行识别;S6、合并识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网山东省电力公司电力科学研究院;国家电网公司,未经国网山东省电力公司电力科学研究院;国家电网公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810495979.2/,转载请声明来源钻瓜专利网。