[发明专利]一种基于线性预测去相关的矢量量化高光谱图像压缩方法有效
申请号: | 201711421608.1 | 申请日: | 2017-12-25 |
公开(公告)号: | CN108053455B | 公开(公告)日: | 2020-06-19 |
发明(设计)人: | 潘志斌;李瑞;王洋 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06T9/00 | 分类号: | G06T9/00;G06K9/62 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 田洲 |
地址: | 710049 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于线性预测去相关的矢量量化高光谱图像压缩方法,包括:步骤一:采集待压缩高光谱图像,将待压缩高光谱图像的所有谱带使用聚类的方法分为多个类,将每一类的聚类中心作为生成的参考谱带;步骤二:使用参考谱带对待压缩高光谱图像中所有的谱带进行预测,将参考谱带看作一组基底,将待压缩高光谱图像中所有的谱带都投影到这组基底上,通过投影的系数预测这些谱带;预测残差就是去冗余后的结果;步骤三:对预测残差进行VQ编码,完成待压缩高光谱图像的压缩;最终图像被压缩为两部分,谱带预测算法的参考谱带和投影系数,以及VQ算法中的码书和索引值。本发明提出了一种有效的谱带去冗余的方法,并通过实验验证了该方法的有效性。 | ||
搜索关键词: | 一种 基于 线性 预测 相关 矢量 量化 光谱 图像 压缩 方法 | ||
【主权项】:
1.一种基于线性预测去相关的矢量量化高光谱图像压缩方法,其特征在于,包括以下步骤:步骤一:采集待压缩高光谱图像,将待压缩高光谱图像的所有谱带使用聚类的方法分为多个类,将每一类的聚类中心作为生成的参考谱带;步骤二:使用参考谱带对待压缩高光谱图像中所有的谱带进行预测,将参考谱带看作一组基底,将待压缩高光谱图像中所有的谱带都投影到这组基底上,通过投影的系数预测这些谱带;预测残差就是去冗余后的结果;步骤三:对预测残差进行VQ编码,完成待压缩高光谱图像的压缩;最终图像被压缩为两部分,谱带预测算法的参考谱带和投影系数,以及VQ算法中的码书和索引值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711421608.1/,转载请声明来源钻瓜专利网。