[发明专利]基于卷积特征提取和机器学习的联合SAR目标识别方法有效

专利信息
申请号: 201711382006.X 申请日: 2017-12-20
公开(公告)号: CN107977683B 公开(公告)日: 2021-05-18
发明(设计)人: 张兴敢;乔卫磊;柏业超;高健;王琼;唐岚 申请(专利权)人: 南京大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/46
代理公司: 南京业腾知识产权代理事务所(特殊普通合伙) 32321 代理人: 郑婷
地址: 210023 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于卷积特征提取和机器学习的联合SAR目标识别方法,读取SAR原始图像数据集,并做预处理;使用卷积变换提取SAR图像特征,卷积层使用卷积核在输入层上通过滑动窗口计算卷积再通过激活函数作为输出,得到多个特征图,每个特征图也是由多个图卷积组合而成,亚采样层对上层的得到的特征图亚采样,减小特征图的大小,最后生成1行128列的特征值;将特征值分别使用softmax回归、支持向量机、K邻近训练分类模型;预测的未知类别图像所属类别,最终的预测结果是依靠三种分类器预测结果综合处理得到。本发明联合三种机器学习方法,识别准确率高,方法鲁棒性强。
搜索关键词: 基于 卷积 特征 提取 机器 学习 联合 sar 目标 识别 方法
【主权项】:
基于卷积特征提取和机器学习的联合SAR目标识别方法,其特征在于按照以下步骤进行:步骤1.读取SAR原始图像数据集,并做预处理;步骤2.使用卷积变换提取SAR图像特征,卷积层使用卷积核在输入层上通过滑动窗口计算卷积再通过激活函数作为输出,得到多个特征图,每个特征图也是由多个图卷积组合而成,亚采样层对上层的得到的特征图亚采样,减小特征图的大小,最后生成1行128列的特征值;步骤3将步骤2中得到的特征值分别使用softmax回归、支持向量机、K邻近训练分类模型;步骤4预测的未知类别图像所属类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711382006.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top