[发明专利]一种基于压缩感知原理的卷积神经网络压缩方法及解压缩方法有效
申请号: | 201711215956.3 | 申请日: | 2017-11-28 |
公开(公告)号: | CN107832837B | 公开(公告)日: | 2021-09-28 |
发明(设计)人: | 路通;孟周宇;巫义锐 | 申请(专利权)人: | 南京大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 北京德崇智捷知识产权代理有限公司 11467 | 代理人: | 王斌 |
地址: | 210000 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于压缩感知原理的卷积神经网络压缩方法及解压缩方法,其中压缩方法包括:预处理步骤、将卷积神经网络中的每一层的权值预处理为一系列矩阵;压缩步骤、将预处理步骤得到的预处理结果进行压缩处理得出压缩后的权值;训练步骤、对压缩后的权值进行训练;编码步骤、对训练步骤训练后的已压缩权值进行编码;模型生成步骤、根据经编码步骤得到的编码结果生成压缩后的卷积神经网络模型文件。本发明基于压缩感知原理的卷积神经网络压缩方法,相比其他方法,会比现在较为流行的直接剪枝量化方法有更高的压缩率,而且可以通过在频域中保留低频信息来防止过多的信息损失。 | ||
搜索关键词: | 一种 基于 压缩 感知 原理 卷积 神经网络 方法 解压缩 | ||
【主权项】:
一种基于压缩感知原理的卷积神经网络压缩方法,其特征在于,包括:预处理步骤、将卷积神经网络中的每一层的权值预处理为一系列矩阵;压缩步骤、将预处理步骤得到的预处理结果进行压缩处理得出压缩后的权值;训练步骤、对压缩后的权值进行训练;编码步骤、对训练步骤训练后的已压缩权值进行编码;模型生成步骤、根据经编码步骤得到的编码结果生成压缩后的卷积神经网络模型文件。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711215956.3/,转载请声明来源钻瓜专利网。