[发明专利]基于连续动作学习自动机的全局优化系统及方法在审
申请号: | 201710520108.7 | 申请日: | 2017-06-30 |
公开(公告)号: | CN109214518A | 公开(公告)日: | 2019-01-15 |
发明(设计)人: | 李生红;葛昊;马颖华;黄德双;江文;狄冲;周之晟;李怡晨 | 申请(专利权)人: | 上海交通大学;携程计算机技术(上海)有限公司 |
主分类号: | G06N20/00 | 分类号: | G06N20/00 |
代理公司: | 上海交达专利事务所 31201 | 代理人: | 王毓理;王锡麟 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于连续动作学习自动机(CALA)的全局优化系统及方法,包括:初始化模块、行为选择模块、环境反馈模块、更新模块和输出模块,其中:初始化模块初始化CALA算法的参数,输入行为选择模块进行行为选择,行为通过...环境的...进入环境反馈模块,得到行为对应的环境反馈,得到局部最优解;更新模块根据环境反馈更新算法参数,将更新的参数输入行为选择模块完成一次迭代,并改进平滑函数;将改进的平滑函数引入下一次迭代的环境反馈模块,进行多次迭代,最终得到极值点,将当前的环境反馈输入输出模块,输出...;作为全局极小值输出;本发明设计合理,引入平滑函数并加入斜率分量进行改进,使得CALA更易跳出局部最小解,并使得后续的搜索具有方向性,大大提高了算法的收敛速度和正确率。 | ||
搜索关键词: | 环境反馈 平滑函数 行为选择 初始化模块 学习自动机 更新模块 连续动作 全局优化 一次迭代 算法 输入输出模块 改进 参数输入 多次迭代 更新算法 输出模块 输入行为 选择模块 输出 引入 初始化 极值点 正确率 最小解 最优解 收敛 搜索 跳出 更新 全局 | ||
【主权项】:
1.一种基于连续动作学习自动机的全局优化系统,其特征在于,包括:初始化模块、行为选择模块、环境反馈模块、更新模块和输出模块,其中:初始化模块初始化CALA算法的参数,输入行为选择模块进行行为选择,行为通过路径环境的应用得到反馈然后进入环境反馈模块,得到行为对应的环境反馈;更新模块根据环境反馈更新CALA算法的参数,将更新的参数输入行为选择模块完成一次迭代;当迭代次数达到设定值时,将当前的环境反馈输入输出模块,输出最优的路径信息。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学;携程计算机技术(上海)有限公司,未经上海交通大学;携程计算机技术(上海)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710520108.7/,转载请声明来源钻瓜专利网。
- 上一篇:量子状态搜索方法及装置
- 下一篇:数据处理系统、方法和设备