[发明专利]基于Spark的并行化随机标签子集多标签文本分类方法在审
申请号: | 201710086932.6 | 申请日: | 2017-02-17 |
公开(公告)号: | CN106874478A | 公开(公告)日: | 2017-06-20 |
发明(设计)人: | 王进;王鸿;夏翠萍;范磊;欧阳卫华;陈乔松;雷大江;李智星;胡峰;邓欣 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06F17/30 | 分类号: | G06F17/30 |
代理公司: | 重庆市恒信知识产权代理有限公司50102 | 代理人: | 刘小红 |
地址: | 400065 重*** | 国省代码: | 重庆;85 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明请求保护一种基于Spark大数据平台的并行化随机标签子集多标签文本分类方法。首先,读取大规模文本数据集和配置信息文件,创建分布式数据集RDD,将训练数据集和预测数据集缓存到内存中,完成初始化操作。其次,并行地随机生成规定数目的标签子集,由原始训练集为每一个标签子集生成一个新的训练集,再次,将新训练集的多个标签通过标签幂集法转换为单个标签,该数据集转化为一个单标签多类数据集,并行地为这些数据集训练一个基分类器。然后,进行预测将得到的单标签多类预测结果转化为多标签结果。最后,将所有预测结果进行汇总投票,得到测试集最终的多标签预测结果。本发明提高了分类的精度、大幅降低处理大规模多标签数据的学习时间。 | ||
搜索关键词: | 基于 spark 并行 随机 标签 子集 文本 分类 方法 | ||
【主权项】:
一种基于Spark的并行化随机标签子集多标签文本分类方法,其特征在于,包括以下步骤:首先,从HDFS上获取来自互联网的大规模文本数据集和配置信息文件,所述大规模文本数据集包括训练数据集和预测数据集,通过Spark API提供的textFile方法将训练数据集、预测数据集、配置信息文件转换成Spark平台的分布式数据集RDD,完成初始化操作;其次,并行地随机生成规定数目的标签子集,由原始训练集为每一个标签子集生成一个新的训练集,该训练集特征为原始训练集的全部特征,新训练集中的标签仅保留对应标签子集中包含的标签;再次,对于每一个新生成的训练集,将训练集的多个标签通过标签幂集法转换为单个标签,将新生成的训练集转化为一个单标签多类数据集,并行地为这些数据集训练一个基分类器;然后,使用训练好的基分类器形成预测模型对测试集进行预测,将得到的单标签多类预测结果转化为多标签结果;最后,将所有预测结果进行汇总投票,得到测试集最终的多标签预测结果,完成文本分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710086932.6/,转载请声明来源钻瓜专利网。