[发明专利]一种链路预测模型的建立及链路预测方法有效
申请号: | 201710004638.6 | 申请日: | 2017-01-04 |
公开(公告)号: | CN108270608B | 公开(公告)日: | 2020-04-03 |
发明(设计)人: | 颜永红;李太松;张艳 | 申请(专利权)人: | 中国科学院声学研究所;北京中科信利技术有限公司 |
主分类号: | H04L12/24 | 分类号: | H04L12/24 |
代理公司: | 北京方安思达知识产权代理有限公司 11472 | 代理人: | 王宇杨;陈琳琳 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种链路预测模型的建立方法,所述链路预测模型包括:时序受限玻尔兹曼机模型和梯度提升决策树模型;所述方法包括:从互联网或其它多媒体中抓取大量的网络数据,对网络数据进行预处理,将网络数据划分为历史数据和现有数据,输入时序受限玻尔兹曼机模型,训练出模型参数;提取网络数据节点对的网络拓扑特征,形成特征集并输入梯度提升决策树模型,训练出模型参数;所述链路预测模型包括训练好的时序受限玻尔兹曼机模型和梯度提升决策树模型。基于该方法建立的链路预测模型,本发明还提供了一种链路预测方法,该方法能够预测网络下一状态的所有链接。 | ||
搜索关键词: | 一种 预测 模型 建立 方法 | ||
【主权项】:
1.一种链路预测模型的建立方法,所述链路预测模型包括:时序受限玻尔兹曼机模型和梯度提升决策树模型;所述方法包括:从互联网或其它多媒体中抓取大量的网络数据,对网络数据进行预处理,将网络数据划分为历史数据和现有数据,输入时序受限玻尔兹曼机模型,训练出模型参数;提取网络数据节点对的网络拓扑特征,形成特征集并输入梯度提升决策树模型,训练出模型参数;所述链路预测模型包括训练好的时序受限玻尔兹曼机模型和梯度提升决策树模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院声学研究所;北京中科信利技术有限公司,未经中国科学院声学研究所;北京中科信利技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710004638.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种微波通信的方法及装置
- 下一篇:一种更新网站服务器的配置文件的方法及装置