[发明专利]基于深度玻尔兹曼机的协同目标分割与行为识别方法有效
申请号: | 201610878504.2 | 申请日: | 2016-10-09 |
公开(公告)号: | CN106599901B | 公开(公告)日: | 2019-06-07 |
发明(设计)人: | 陈飞;曾勋勋;王灿辉 | 申请(专利权)人: | 福州大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06T7/11 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 蔡学俊 |
地址: | 350108 福建省福州市*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于深度玻尔兹曼机的协同目标分割与行为识别方法。该方法,首先利用深度玻尔兹曼机从目标行为训练库中学习行为与动作的多层结构特征,接着以底层图像分割为出发点,根据贝叶斯推理,将目标分割看作最大化条件概率,然后在学习得到的高层先验行为指导下,采用目标形状信息作为底层、中层和高层连接的纽带,并建立总的能量函数,最后通过能量极小化完成目标的同时分割与行为识别。本发明利用底层与高层的协同合作可以同时提高目标分割的精度和行为识别的准确性,解决了在低质量环境下由于噪声、遮挡、光照等多种因素影响下分割效果不佳的问题。 | ||
搜索关键词: | 基于 深度 玻尔兹曼机 协同 目标 分割 行为 识别 方法 | ||
【主权项】:
1.一种基于深度玻尔兹曼机的协同目标分割与行为识别方法,其特征在于:按以下步骤实现:步骤S1:建立目标的先验行为训练库S,记为S={(Q1,l1),(Q2,l2),…,(Qn,ln)};其中,n为样本个数,Q为目标的行为,l为行为的标记;一个目标行为由T个连续形状构成,即Q={q1,…,qT};形状q采用概率的方式定义,q:Ω→[0,1],其中Ω为图像的定义域,任意x∈Ω,q(x)表示x属于形状的概率;定义Ω中q(x)≥0.5的区域为目标区域,剩余区域为背景区域;假设目标的行为分为K类,用K维向量表示,记为l=(l1;l2;…;lK);步骤S2:利用深度玻尔兹曼机对目标行为训练库构建学习模型,其中最底层是目标的多张形状,最高层是行为标签;
为相应形状q1,…,qT的第一隐含层表示,h2为行为的隐含层表示;通过隐含层构建底层与高层的协同合作;令
为学习模型的参数,其中
表示qi与
之间的权值,W2与W3分别表示
与h2、h2与l之间的权值,
a2、a3和bi分别为
h2、l和qi所在层的偏值;标签层采用softmax分类方法,训练模型的能量方程定义为
步骤S3:以底层多张图像分割为出发点,根据贝叶斯推理,将目标分割看作最大化条件概率P(q1,…,qT|I1,…,IT),即从给定的多张图像I1,…,IT中估计出最佳的目标形状向量q1,…,qT;假设多张图像之间相互独立,利用贝叶斯推理可得
最大化条件概率转换为最小化
上式右边第一项称为先验形状约束项,记为Es(q1,…,qT)=‑logP(q1,…,qT),第二项为数据项
步骤S4:根据非参数灰度模型,计算数据项Ed(q1,…,qT);假设每张图像中像素之间是相互独立的;从图像It中估计形状qt,表示为logP(It|qt)=∫ΩqtlogPin(It)+(1‑qt)logPout(It)dx上式qt表示目标形状,1‑qt表示背景;概率Pin(It(x))表示每个像素点属于目标的概率,Pout(It(x))表示每个像素点属于背景的概率;以一维方式表示It∈Rm×1和qt∈Rm×1,m为图像的像素点个数,记
那么,
通常待分割的目标在不同图像中会呈现不同的姿态,引入循环移位的思想解决分割过程中目标出现的形变;步骤S5:由于目标行为的各个动作之间存在相关性,假设服从玻尔兹曼分布P(q1,…,qT)∝exp(‑EDBM(q1,…,qT)),那么Es(q1,…,qT)=‑logP(q1,…,qT)=EDBM(q1,…,qT)采用目标形状信息作为底层、中层和高层连接的纽带,利用深度玻尔兹曼机学习得到的模型
作为高层先验项,合并底层数据项
得到总的计算模型
步骤S6:以上模型包含四类未知参数,采用交替迭代和近似推理的方法求解,具体求解方程如下:(1)
(2)
(3)
(4)
(5)![]()
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610878504.2/,转载请声明来源钻瓜专利网。