[发明专利]一种基于卷积神经网络图像识别的水流测速方法有效

专利信息
申请号: 201610517559.0 申请日: 2016-06-28
公开(公告)号: CN106156734B 公开(公告)日: 2019-02-01
发明(设计)人: 王万良;鞠振宇;邱虹;李卓蓉;杨平;郑建炜 申请(专利权)人: 浙江工业大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 杭州天正专利事务所有限公司 33201 代理人: 王兵;黄美娟
地址: 310014 浙江省杭州*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于卷积神经网络图像识别的水流测速方法,包括如下步骤:设备安装、样本图片采集。建立样本数据、训练分类器、实际测量。本发明采用非接触式的摄像头,获取大量河流不同状态下的表面图像并预先测量每张图像对应的流速,并对图像进行预处理,生成样本数据训练调整卷积神经网络,再需要测量流速时,只需摄像头拍摄下当时河流表面的图片,利用训练好的卷积神经网络对该图片进行分类,得到的类别所对应的流速,即为此时河流的流速。
搜索关键词: 一种 基于 卷积 神经网络 图像 识别 水流 测速 方法
【主权项】:
1.一种基于卷积神经网络图像识别的水流测速方法,包括如下步骤:步骤1,设备安装阶段:选取目标河流并勘察,若河流有桥或码头,则将摄像头安装于桥或码头,若河流无桥或码头,则选取平坦河岸树立支架,安装摄像头;摄像头通过视频线连接水电站主机,该主机需安装视频采集卡;摄像头选择球机以方便调整摄像头角度对准河流表面,调试摄像头,使其捕获的画面仅有河流表面图像,无河岸杂物;与拍摄区域安装照明灯,用于夜间的拍摄工作;步骤2,样本图片采集阶段:抽样选取各个时间段、各种天气条件以及洪水高发期的特殊时期,拍摄河流表面的视频,由工作人员使用流速测量仪跟踪浮标,记录每段视频对应时刻的河流流速;利用视频软件逐帧截取图片,同一段视频截取的图片划归为同一流速;根据图片和流速的映射关系,建立图片与流速关系映射表;步骤3,建立样本数据阶段:选取3000张各个流速状态的图片,根据流速测量的精度要求和洪水预防的警报线要求,对流速进行范围性分类并用数字标记每个类别,对照图片与流速映射表,依次对所属流速范围的图片进行类别标记,作为训练样本集的类别标签;将图片转换为同样格式,对图片进行灰度化、直方图均衡、对比度增强的图片预处理操作,并保存为训练样本集;选取1000张各个流速状态的图片,再次进行上述操作,得到测试样本集的类别标签和测试样本集;步骤4,训练分类器阶段:搭建卷积神经网络初步结构模型,用步骤3所得的样本数据训练并测试调整卷积神经网络模型;本网络模型依次由输入层、卷积层、池化层、卷积层、池化层、输出层组成;输入层为训练数据,卷积层为特征提取层,池化层位于卷积层后,是一个二次提取的计算层;第二个S层,即完成了对原始数据的特征提取后,把S层的特征数据进行向量化,然后连接到分类器,经输出层输出类别结果;卷积层用卷积核在图像矩阵上游走,在对应位置元素相乘,再把相乘的结果相加,最后相加的结果形成新的图像矩阵,游走完成后即完成了对原始图像的卷积变换,形成此卷积核下的特征提取;卷积核大小为5*5;在通过卷积获得了特征之后,对特征矩阵分区域进行平均值池化,降低特征维度;输出层输出实际类别,与样本的类别标签对比,反向调整权值,直至实际输出与类别标签接近,调整迭代次数直至误差函数收敛;卷积神经网络包含前向传播与反向传播两个过程;前向传播将上一层的输出加权求和后,经由激活函数输出结果,该结果又作为下一层的输入,继续加权求和,由激活函数输出,如此反复,直到网络模型最后的输出层;假设当前层为l层,当前层的输出结果为a(l),W表示权值,b表示偏置,下一层则为l+1层,l层的输出结果a(l),加权求和得到z(l+1)作为l+1层的输入,得到该层的输出a(l+1),激活函数f(·)为sigmod函数;计算公式如下:z(l+1)=W(l)a(l)+b(l)a(l+1)=f(z(l+1))接下来,通过反向传播调整网络模型的权值W和偏置b;反向传播的核心是使代价函数J(W,b)最小化,从而使得误差更小。具体计算过程如下:(1)代价函数计算公式:其中hW,b(x)为前向传播的实际输出结果,y为对应的样本标签,即期望输出;(2)对于第nl层的每个输出单元i,根据以下公式计算其残差(3)对l层的第i个节点的残差δ(l)的计算公式为:δ(l)=((W(l))Tδ(l+1))·f′(z(l))(4)计算需要的偏导数,计算公式为:(5)更新权值参数:其中α是学习速率,m为数据集的样例个数,λ为权重衰减参数,用于控制公式中两项的相对重要性;接着重复以上迭代步骤,不断更新权值与偏置,减小J(W,b)的值,进而得出完整的卷积神经网络;步骤5,实际测量阶段:继续拍摄河流表面图片,经由步骤3所述方法处理图片,并将图片传入步骤4中训练好的卷积神经网络,经过卷积神经网络分类后得出该图片类别标签,该类别标签所对应的流速范围即为该图片的流速范围。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610517559.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top