[发明专利]一种基于小波系数ARMA模型的能耗数据宏观预测方法在审
申请号: | 201410507466.0 | 申请日: | 2014-09-28 |
公开(公告)号: | CN104268408A | 公开(公告)日: | 2015-01-07 |
发明(设计)人: | 于凤芹;於敏 | 申请(专利权)人: | 江南大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 214122 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于能耗数据宏观预测领域的一种方法。由于小波多尺度分析可以很好地表现数据的本质特征并获得更多的细节信息,而能耗数据因其具有随机性和噪声波动性,能耗数据存在多尺度特征。运用小波分析对能耗数据进行多尺度分解和小波去噪处理,并结合ARMA模型对能耗数据进行宏观预测。本发明首先对能耗数据进行小波多尺度分解,在得到不同尺度下的小波系数后,将属于噪声的小波系数去掉,保留有用信号的小波系数,达到对能耗数据去噪的目的。然后对去噪后的各尺度下的小波系数建立能反应其本质规律ARMA模型,用所建模型对各尺度小波系数分别进行预测。最后将预测结果运用小波重构的思想得到最终的预测结果。通过对能耗数据各尺度下的小波系数去噪和预测处理,从而提高能耗数据预测的准确性。 | ||
搜索关键词: | 一种 基于 系数 arma 模型 能耗 数据 宏观 预测 方法 | ||
【主权项】:
一种基于小波系数ARMA模型的能耗数据宏观预测方法,其特征是:对能耗数据进行多尺度小波分解,在每个尺度下,采用小波阈值去噪法,当小波系数大于某个临界阈值时系数保留,相反则舍弃,将属于噪声的小波系数去除,保留有用的小波系数,达到信号去噪的目的。然后对去噪处理后的各尺度下的小波系数分别建立ARMA模型进行预测,增加预测的精确性。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江南大学,未经江南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410507466.0/,转载请声明来源钻瓜专利网。
- 上一篇:具有喷液功能的导板
- 下一篇:一种农药残留田间试验用电动喷雾器
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用