[发明专利]远距离障碍的自适应检测方法无效

专利信息
申请号: 201010154744.0 申请日: 2010-04-24
公开(公告)号: CN101813475A 公开(公告)日: 2010-08-25
发明(设计)人: 刘成良;屠珺;苑进;王明军 申请(专利权)人: 上海交通大学
主分类号: G01C11/06 分类号: G01C11/06;G06K9/66
代理公司: 上海交达专利事务所 31201 代理人: 王锡麟;王桂忠
地址: 200240 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种机器人技术领域的远距离障碍的自适应检测方法,包括以下步骤:采集图像并进行预处理;划分区域并进行超像素分割处理;进行高维外观特征提取;得到近距离场景区域每个超像素的地形类别;得到近距离场景超像素的低维主导特征;得到远距离场景超像素的低维主导特征;进行Adaboost分类器训练;将远距离场景区域超像素的低维主导特征输入至Adaboost分类器,当Adaboost分类器输出为1时,则当前场景为障碍;否则当前场景为地面。本发明可实现障碍检测特征的自适应提炼,简化分类器模型,可以同时减少障碍多模态分布及由随机特征重叠导致的类别歧义对检测结果的影响,且提高障碍检测的准确性和稳定性。
搜索关键词: 远距离 障碍 自适应 检测 方法
【主权项】:
一种远距离障碍的自适应检测方法,其特征在于,包括以下步骤:第一步,由立体相机自动采集同一场景的同一时间、不同范围的两幅原始图像,对两幅原始图像中每个像素进行立体匹配得到视差图,同时对其中一幅原始图像进行降采样和高斯平滑滤波的预处理,得到预处理后的图像;第二步,将预处理后的图像划分为远距离场景区域和近距离场景区域,并分别对远距离场景区域和近距离场景区域进行超像素分割处理,得到远距离场景区域和近距离场景区域的超像素集合;第三步,分别对远距离场景区域和近距离场景区域的超像素进行高维外观特征提取,得到远距离场景区域和近距离场景区域中每个超像素的高维外观特征向量;第四步,对第一步得到的视差图进行地平面拟合处理,得到近距离区域场景中每个像素所属的地形类别,将超像素所包含像素的地形类别进行统计,类别数最大的那个地形类别作为超像素的地形类别;第五步,对近距离场景超像素的地形类别进行有监督局部线性嵌入处理,得到近距离场景超像素的低维主导特征;第六步,对近距离场景超像素的低维主导特征进行加权和处理,得到远距离场景超像素的低维主导特征;第七步,对近距离场景区域超像素的地形类别和低维主导特征进行Adaboost分类器训练,得到Adaboost分类器;第八步,将远距离场景区域超像素的低维主导特征输入至Adaboost分类器,当Adaboost分类器输出为1时,则当前场景为障碍;否则当前场景为地面。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201010154744.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top