[发明专利]设备材料力学性能测试方法、系统、介质、计算机设备在审
申请号: | 202010767200.5 | 申请日: | 2020-08-03 |
公开(公告)号: | CN111950099A | 公开(公告)日: | 2020-11-17 |
发明(设计)人: | 曹宇光;宋明;李旭阳;马帅;吴琼;甄莹 | 申请(专利权)人: | 中国石油大学(华东) |
主分类号: | G06F30/17 | 分类号: | G06F30/17;G06F30/23;G06F30/27;G06N3/08;G06N3/12;G06F119/14 |
代理公司: | 北京汇捷知识产权代理事务所(普通合伙) 11531 | 代理人: | 盛君梅 |
地址: | 266580 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 设备 材料 力学性能 测试 方法 系统 介质 计算机 | ||
1.一种设备材料力学性能测试方法,其特征在于,所述设备材料力学性能测试方法包括:
对管道钢材料进行小冲杆试验,并建立小冲杆试验的二维轴对称有限元模型;将试验结果与模拟结果进行对比,确定有限元模型的准确性;
改变Hollomon公式中的参数K与n,获得大量假想材料的真应力-应变曲线;将每一条真应力-应变曲线代入经试验验证的小冲杆试验有限元模型中得到其对应的小冲杆载荷-位移曲线;归一化预处理后得到BP神经网络所需的训练样本数据;
设计输入层、隐含层、输出层的层数构建最佳的BP神经网络结构,选择合适的激活函数、目标误差;
将BP神经网络的权值和阈值作为遗传算法中的一个种群,并将其初始化;
利用遗传算法计算其适应度函数,选择适应度高的染色体进行复制,使其交叉、变异得到新的种群,根据约束条件确定最优个体,并将其作为BP神经网络的权值和阈值;
使用经过优化的BP神经网络对样本数据进行训练,在同种材料小冲杆载荷-位移曲线与真应力-应变曲线之间建立关联关系;
对于训练好的BP神经网络,应用于在役设备材料的力学性能预测,实现在役设备不停机便可对其材料的力学性能进行微损测试的目的。
2.如权利要求1所述的设备材料力学性能测试方法,其特征在于,所述设备材料力学性能测试方法的有限元软件为ABAQUS。
3.如权利要求1所述的设备材料力学性能测试方法,其特征在于,所述设备材料力学性能测试方法Hollomon公式中的参数变化范围均在合理范围内,共得到457组假想材料的材料参数。
4.如权利要求1所述的设备材料力学性能测试方法,其特征在于,所述设备材料力学性能测试方法最佳的BP神经网络结构包括:输入层神经元个数为120个,隐含层神经元个数为241个,输出层神经元个数为100个,激活函数分别为logsig和purelin,目标误差为1×10-5。
5.如权利要求1所述的设备材料力学性能测试方法,其特征在于,所述设备材料力学性能测试方法的约束条件为已经达到的迭代次数或者网络误差满足最小误差要求;网络误差计算过程包括如下步骤:
(1)将遗传算法优化后的权值和阀值赋予BP网络;
(2)计算每个训练样本按照BP网络前向方向的输出值,通过与期望值进行比较,得出每个训练样本的误差;
(3)计算所有训练样本的误差均方根值,即得网络误差。
6.如权利要求1所述的设备材料力学性能测试方法,其特征在于,所述设备材料力学性能测试方法通过训练好的BP神经网络可得到在役设备材料的真应力-应变曲线,得到该材料的屈服强度与抗拉强度。
7.一种计算机设备,其特征在于,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
对管道钢材料进行小冲杆试验,并建立小冲杆试验的二维轴对称有限元模型;将试验结果与模拟结果进行对比,确定有限元模型的准确性;
改变Hollomon公式中的参数K与n,获得大量假想材料的真应力-应变曲线;将每一条真应力-应变曲线代入经试验验证的小冲杆试验有限元模型中得到其对应的小冲杆载荷-位移曲线;归一化预处理后得到BP神经网络所需的训练样本数据;
设计输入层、隐含层、输出层的层数构建最佳的BP神经网络结构,选择合适的激活函数、目标误差;
将BP神经网络的权值和阈值作为遗传算法中的一个种群,并将其初始化;
利用遗传算法计算其适应度函数,选择适应度高的染色体进行复制,使其交叉、变异得到新的种群,根据约束条件确定最优个体,并将其作为BP神经网络的权值和阈值;
使用经过优化的BP神经网络对样本数据进行训练,在同种材料小冲杆载荷-位移曲线与真应力-应变曲线之间建立关联关系;
对于训练好的BP神经网络,应用于在役设备材料的力学性能预测,实现在役设备不停机便可对其材料的力学性能进行微损测试的目的。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油大学(华东),未经中国石油大学(华东)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010767200.5/1.html,转载请声明来源钻瓜专利网。