[发明专利]助听器的回声消除技术在审
申请号: | 201711454005.1 | 申请日: | 2017-12-27 |
公开(公告)号: | CN109979480A | 公开(公告)日: | 2019-07-05 |
发明(设计)人: | 廖芙蓉;其他发明人请求不公开姓名 | 申请(专利权)人: | 廖芙蓉 |
主分类号: | G10L21/0216 | 分类号: | G10L21/0216;H04R25/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 620860 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 回声消除 回声消除技术 自适应滤波 收敛 改进 数字助听器 仿真实现 仿真实验 分析比较 工作原理 回声产生 算法应用 原理框图 助听器 传统的 非连续 计算量 算法 陷波 研究 保留 | ||
通过研究了数字助听器中的回声产生的原因及其危害以及常见的回声消除技术包括:移相法、陷波法和自适应滤波法;然后给出了非连续回声消除和连续回声消除算法的原理框图,并介绍了各自的工作原理;重点研究了自适应滤波技术,详细介绍了LMS、NLMS和RLS算法,通过仿真实现了三者的回声消除效果,并分析比较了各自的优缺点;最后针对NLMS算法收敛速度慢而RLS算法计算量大的问题,利用DCT变换对传统的NLMS算法进行改进,提出了一种基于DCT的改进NLMS算法,并将该改进算法应用到回声消除中去,仿真实验表明DCT‑NLMS能够在较好保留回声消除能力的同时,提高NLMS算法的收敛速度。
技术领域
本发明利用前一时刻已经获得的滤波器参数等结果,自动的调节现时刻的滤波器参数,以适应信号和噪声未知的或者随时间变化的统计特性,从而实现最优滤波;自适应滤波器是实现自适应滤波的设备,它可以是连续域的或是离散域的,对于每个输入信号序列x(n)的样值,我们都会按特定的自适应算法进行更新操作,对滤波器系数w(n)进行实时调节,以便使输出的信号序列y(n)与期望输出信号序列d(n)的均方误差为最小。
背景技术
助听器在治疗听力患者的过程中发挥着不可替代的作用;然而在患者人群中,只有极少的人具有配置助听器的经济能力,绝大多数人只能受到疾病的困扰;高昂的价格,较低的年产量是造成这种问题的根源,随着经济的发展,医疗卫生越来越受到关注,全世界都对研究高性能且经济适用的助听器投入了大量的精力;在助听器中最重要的就是语音处理模块,可以说语音处理算法效率直接决定着助听器的性能,因此越来越多的学者进入了语音处理算法领域。
发明内容
本发明的解决方案在回声消除算法可分为非连续型和连续型;二者的区别在于开启回声估计的时机,非连续型算法在两种情况下开启回声估计,其一是无语音输入的情况下;其二是在系统发生不稳定时,此时要中断语音输入,然后开启回声估计算法;而连续型算法是一直根据输入信号和估计误差调整自适应滤波器,在数字助听器中最常用的回声消除算法就是利用一个自适应滤波器实时的估计出回声路径,然后估算出反馈信号,并在输入端减去该信号。
具体实施方式
本发明实施如下,当回声路径上一出现变化就会开启回声估计算法,判断路径是否变化的依据是是否出现振荡;当系统出现振荡时,就要中断语音输入,而将一白噪声序列作为输入,同时利用自适应算法尽快准确的估计出回声反馈路径;当新的回声路径被估算出来之后,系统恢复正常工作;自适应滤波器根据估计信号v(n)和麦克风输出信号s(n)的差值e(n)不断的更新滤波器系数,进而实时的估计出回声信号;经过近1000次的迭代能够到达明显收敛的效果,因为输入的白噪声的采样频率为8000HZ,所以可知LMS算法要达到收敛,所需的时间应该为125ms左右,然而在实际的回声消除系统中,常常只有50ms左右的中断间隔,因此说明LMS算法满足不了数字助听器对收敛时间的要求。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于廖芙蓉,未经廖芙蓉许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711454005.1/2.html,转载请声明来源钻瓜专利网。