[发明专利]一种人脸图像库构建方法在审
申请号: | 201711287366.1 | 申请日: | 2017-12-07 |
公开(公告)号: | CN107977439A | 公开(公告)日: | 2018-05-01 |
发明(设计)人: | 倪子妍 | 申请(专利权)人: | 宁波亿拍客网络科技有限公司 |
主分类号: | G06F17/30 | 分类号: | G06F17/30;G06K9/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 315040 浙江省宁波市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 图像 构建 方法 | ||
技术领域
本发明涉及一种人脸图像库构建方法,还涉及到一种可识别对象图像库构建方法。
背景技术
人脸识别的英文名称是 Human Face Recognition。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。近年,生物特征识别这一技术发展今非昔比。其中,人脸识别是一种非接触性技术,具有可视化、符合人的思维习惯的特点,得以在商业、安全等领域广泛应用。人脸识别技术正式起步于美国,我国接触该技术较晚,但是经过科研人员和学者们多年的研究和实验,目前我国的人脸识别技术已经达到国际先进的水平。在我国,最早从人工向计算机智能识别发展的生物识别技术是指纹识别,但是在实际应用中逐渐产生了对人脸识别技术的需求。从2001年开始,公安部门就开始使用这一技术来防范打击重大刑事犯罪并取得国家的支持。随后,我国在2008年北京奥运会举行时应用了人脸识别技术,这标志着我国的人脸识别进入大规模的使用阶段。在前几年举办的世博会上,该技术得到更加广泛的应用,同时各大公司也逐渐加入,实现了人脸识别技术在中国的大规模应用。近年来,安防行业掀起了一波人脸识别的热潮,众多厂商纷纷推出了相关产品,一时间,人脸识别成为了行业内的热点技术方向。据笔者统计,在2014年的中国国际社会公共安全博览会上,至少有20家企业展示了自己的人脸识别产品。其中既有大华股份、海康威视这样的大安防厂商,也有汉王、银晨这样的智能化厂商。同时,众多媒体也接连报道了人脸识别技术在学术界和工业界取得的巨大成果:比如今年,腾讯在LFW人脸识别数据集上取得了99.65%的识别率,刷新了年初谷歌的记录;阿里巴巴集团执行主席马云在德国展会上演示了人脸识别与支付宝的结合应用,“刷脸支付”将走向生活。人脸识别技术走进生活,从北京人民公园人脸识别取厕纸,到江苏人脸识别抓拍行人闯红灯,从远程人脸认证养老金领取资格到公司门禁考勤放行审核,从机场、火车站安检“刷脸”到公安安防管理“刷脸”,从“刷脸”办理银行业务到“扫脸”支付购买商品……科幻电影中的“黑科技”,如今实实在在走进了我们的生活中。应用领域:人证比对:驾照、签证、身份证、护照、投票选举、智能卡用户验证等等;智能接入:接入控制设备存取、车辆访问、智能ATM、电脑接入、程序接入(CRM接入)、网络接入等;安全维稳:安全反恐报警、登机、乘车、体育场观众扫描、计算机安全、网络安全、执法嫌疑犯识别、欺骗识别等;人脸监控:校园监控、小区监控、公园监控、医院监控、街道监控、电网监控、入口监控等;人脸管理:人脸数据库人脸检索、人脸标记、人脸分类、多媒体管理人脸搜索、人脸视频分割和拼接等;其他人脸应用:人机交互式游戏、主动计算、人脸重建、低比特率图片和视频传输等;以公安应用为例,公安部门在查办案、处理事务时常常会遇到一些不明身份的人员,比如走丢的老人、小孩,拒不交代身份的嫌疑犯,无人认领的尸体等。传统的人工走访会浪费大量的人力物力也收效甚小。利用人脸识别检测系统,将目标人脸输入到系统中。系统毫秒间即可自动在海量人口数据库中进行查找比对,罗列出若干名疑似的人员信息。只需公安部门通过简单的人工干预方式,对系统结果进行筛选,就能得到目标的真实身份。中国有14亿人口,庞大的数据支撑成为了人脸识别准确度得以加速提升的重要条件。大数据为深度学习提供了学习的数据基础,使得人脸识别的错误率大大降低。人脸识别的应用都非常的关注误报条件下的识别性能,比如人脸支付需要控制错误接受率在0.000001之内;对于安防监控而言,可能需要控制在0.000000001之内(比如几十万人的注册库)。安防涉及维稳,涉及到民生领域财产安全,所需的人脸识别技术就更具有挑战性。而随着深度学习演进,基于深度学习的人脸识别将获得突破性的进展。它需要的只是越来越多的数据和样本,数据和样本越多、反复训练的次数越多,它越容易捕捉到准确的结果,给你准确的答案。所以,当一套人脸识别系统的设备,在全面引入深度学习的算法之后,它几乎是很完美的解决了以前长期各种各样的变化问题。人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。人脸识别综合运用了数字图像/视频处理、模式识别、计算机视觉等多种技术,核心技术是人脸识别算法。目前人脸识别的算法有4 种:基于人脸特征点的识别算法、基于整幅人脸图像的识别算法、基于模板的识别算法、利用神经网络进行识别的算法。人脸识别算法的原理:系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。人脸识别法主要集中在二维图像方面,二维人脸识别主要利用分布在人脸上从低到高80个节点或标点,通过测量眼睛、颧骨、下巴等之间的间距来进行身份认证。人脸识别算法主要有:1.基于模板匹配的方法。模板分为二维模板和三维模板,核心思想:利用人的脸部特征规律建立一个立体可调的模型框架,在定位出人的脸部位置后用模型框架定位和调整人的脸部特征部位,解决人脸识别过程中的观察角度、遮挡和表情变化等因素影响。2.基于奇异值特征方法。人脸图像矩阵的奇异值特征反映了图像的本质属性,可以利用它来进行分类识别。3.子空间分析法。因其具有描述性强、计算代价小、易实现及可分性好等特点,被广泛地应用于人脸特征提取,成为了当前人脸识别的主流方法之一。4.局部保持投影(Locality Preserving Projections,LPP)。是一种新的子空间分析方法,它是非线性方法Laplacian Eigen map的线性近似,既解决了PCA等传统线性方法难以保持原始数据非线性流形的缺点,又解决了非线性方法难以获得新样本点低维投影的缺点。5.主成分分析(PCA)。PCA模式识别领域一种重要的方法,已被广泛地应用于人脸识别算法中,基于PCA人脸识别系统在应用中面临着一个重要障碍:增量学习问题。增量PCA算法由新增样本重构最为重要 PCS,但该方法随着样本的增加, 需要不断舍弃一些不重要PC,以维持子空间维数不变, 因而该方法精度稍差。6.其他方法。弹性匹配方法、特征脸法(基于KL变换)、人工神经网络法、支持向量机法、基于积分图像特征法(adaboost学习)、基于概率模型法。二维人脸图像库构建方法的最大不足是在面临姿态、光照条件不同、表情变化以及脸部化妆等方面较为脆弱,识别的准确度受到很大限制,而这些都是人脸在自然状态下会随时表现出来的。三维人脸识别可以极大的提高识别精度,真正的三维人脸识别是利用深度图像进行研究,自90年代初期开始,已经有了一定的进展。三维人脸图像库构建方法有:1.基于图像特征的方法。采取了从3D结构中分离出姿态的算法。首先匹配人脸整体的尺寸轮廓和三维空间方向;然后,在保持姿态固定的情况下,去作脸部不同特征点(这些特征点是人工的鉴别出来)的局部匹配。2.基于模型可变参数的方法。使用将通用人脸模型的3D变形和基于距离映射的矩阵迭代最小相结合,去恢复头部姿态和3D人脸。随着模型形变的关联关系的改变不断更新姿态参数,重复此过程直到最小化尺度达到要求。基于模型可变参数的方法与基于图像特征的方法的最大区别在于。后者在人脸姿态每变化一次后,需要重新搜索特征点的坐标,而前者只需调整3D变形模型的参数。人脸识别算法研究已久,在背景简单的情形下,大部分算法都能很好的处理。但是,人脸识别的应用范围颇广,仅是简单图像测试,是远远不能满足现实需求的。所以人脸识别算法还是存在很多的难点。光照问题是机器视觉中的老问题,在人脸识别中的表现尤为明显,算法未能达到完美使用的程度。与光照问题类似,姿态问题也是人脸识别研究中需要解决的一个技术难点。针对姿态的研究相对比较少,多数的人脸识别算法主要是针对正面,或接近正面的人脸图像,当发生俯仰或者左右侧而比较厉害的情况下,人脸识别算法的识别率也将会急剧下降。对于非配合情况下的人脸图像采集,遮挡问题是一个非常严重的问题,特别是在监控环境下,往往被监控对象都会带着眼镜﹑帽子等饰物,使得被采集出来的人脸图像有可能不完整,从而影响了后面的特征提取与识别,甚至会导致人脸识别算法的失效。随着年龄的变化,面部外观也在变化,特别是对于青少年,这种变化更加的明显。对于不同的年龄段,人脸识别算法的识别率也不同。人脸图像的来源可能多种多样,由于采集设备的不同,得到的人脸图像质量也不同,特别是对于那些低分辨率﹑噪声大﹑质量差的人脸图像如何进行有效的人脸识别是个需要关注的问题。同样的,对于高分辨图像,对人脸识别算法的影响也需要进一步研究。基于统计学习的人脸识别算法是人脸识别领域中的主流算法,但是统计学习方法需要大量的培训。由于人脸图像在高维空间中的分布是一个不规则的流行分布,能得到的样本只是对人脸图像空间中的一个极小部分的采样,如何解决小样本下的统计学习问题有待进一步的研究。传统人脸识别算法如PCA、LDA等在小规模数据中可以很容易进行训练学习。但是对于海量数据,这些方法其训练过程难以进行,甚至有可能崩溃。随着人脸数据库规模的增长,人脸算法的性能将呈现下降。基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宁波亿拍客网络科技有限公司,未经宁波亿拍客网络科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711287366.1/2.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序