[发明专利]适用于高速高精加工的椭圆弧平滑压缩插补算法有效
申请号: | 201610978793.3 | 申请日: | 2016-11-08 |
公开(公告)号: | CN108073138B | 公开(公告)日: | 2020-08-11 |
发明(设计)人: | 吴文江;李浩;黄艳;韩文业;郭安;韩旭 | 申请(专利权)人: | 沈阳高精数控智能技术股份有限公司 |
主分类号: | G05B19/4103 | 分类号: | G05B19/4103 |
代理公司: | 沈阳科苑专利商标代理有限公司 21002 | 代理人: | 王倩 |
地址: | 110168 辽宁*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 适用于 高速 精加工 椭圆 平滑 压缩 算法 | ||
1.一种适用于高速高精加工的椭圆弧平滑压缩插补算法,其特征在于包含以下步骤:
识别连续微小线段加工区域;
在连续微小线段加工区域中选取型值点并对其进行拟合得到二次有理Bézier曲线;
型值点的选取,对于连续微小线段加工区域中的指令点,通过离散点曲率计算公式,计算其曲率值,并根据相邻指令点的曲率值和判断条件,找出加工路径中局部曲率最大值点和拐点,将连续微小线段加工区域的两端点、局部曲率最大值点和拐点标记为型值点;
型值点的拟合,在保证加工精度的条件下,根据型值点的坐标值和单位切矢,将指令点指定的折线加工路径转化为平滑的二次有理Bézier曲线加工路径;
根据曲线特征识别椭圆弧及其几何形式转换;
所述根据曲线特征识别椭圆弧及其几何形式转换包括以下步骤:
5-1)当|P0P1|!=|P1P2|且0<w1<1时,则该曲线为椭圆弧;
5-2)通过以下步骤得到椭圆弧的几何信息:
Ci(u)为加工路径中某段的标准型二次有理Bézier曲线,且其对应于一个椭圆弧段,根据Ci(u)可得到该椭圆弧段的起点坐标p_start和终点坐标p_end;该椭圆弧段的中心坐标为,
P1+ε(S+T)
S=P0-P1,T=P2-P1,
其中,w1为权重,P0为首型值点,P2为末型值点,P1为控制点;
该椭圆弧段的长、短半径分别为,
假设λ2>λ1>0,且是如下二次方程的根,
2δλ2-(kη+4β)λ+2(k-1)=0
δ=|S×T|2,η=|S-T|2,β=S·T
该椭圆弧段长轴上的两个点为,
Q1=P1+(ε+r1x0)S+(ε+r1y0)T
Q2=P1+(ε-r1x0)S+(ε-r1y0)T
根据Q1、Q2,可以得到长轴的斜率kl,和长轴与x轴正半轴的夹角d_kl;以长轴为x′轴,短轴为y′轴建立局部坐标系,利用Q1、Q2、中心坐标、椭圆弧段起点坐标和椭圆弧段终点坐标,求得椭圆弧段起点与中心连线、椭圆弧段终点与中心连线分别相对于局部坐标系x′正半轴的起始角度d_start、终点角度d_end,以及椭圆弧的方向turn,x0、y0为椭圆弧段起点坐标;
将属于同一椭圆的相邻椭圆弧合并,得到插补曲线;
在插补曲线上进行椭圆弧插补。
2.根据权利要求1所述的一种适用于高速高精加工的椭圆弧平滑压缩插补算法,其特征在于所述进行拟合包括以下步骤:
2-1)求取二次有理Bézier曲线的权重;
2-2)根据权重通过求取平均值得到二次有理Bézier的拟合曲线。
3.根据权利要求2所述的一种适用于高速高精加工的椭圆弧平滑压缩插补算法,其特征在于所述权重通过下式得到:
其中,w1为权重,P0为首控制点、P2为末控制点、P1为控制点、P为指令点,u为P0Q与QP2的比值,Q为以P1为投影中心,直线段[P0 P2]投影到二次有理Bézier拟合曲线的投影点。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于沈阳高精数控智能技术股份有限公司,未经沈阳高精数控智能技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610978793.3/1.html,转载请声明来源钻瓜专利网。
- 上一篇:数值控制装置
- 下一篇:安全开关装置、操作终端以及机械控制系统