[发明专利]一种基于传感器的移动终端运动识别装置及方法有效

专利信息
申请号: 201310367884.X 申请日: 2013-08-22
公开(公告)号: CN103455170B 公开(公告)日: 2017-03-01
发明(设计)人: 杜军朝;刘惠;赵昆仑;张晨;李聪奇;张春龙;李兴;沈坚;姚家胜 申请(专利权)人: 西安电子科技大学
主分类号: G06F3/0346 分类号: G06F3/0346;G06F1/32;H04M1/725
代理公司: 陕西电子工业专利中心61205 代理人: 王品华
地址: 710071 陕西省*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 传感器 移动 终端 运动 识别 装置 方法
【权利要求书】:

1.一种基于传感器的移动终端运动识别装置,其特征在于,所述装置包括:

数据收集单元(10),所述数据收集单元包括加速度传感器和磁场传感器,所述加速度传感器用于收集至少两个加速度数据,所述磁场传感器用于收集磁场数据;

静噪滤波器(20),用于对所述加速度传感器收集的至少两个加速度数据进行噪声过滤,从而降低所述加速度传感器的测量误差;

状态监听单元(30),用于根据移动终端的当前运行状态来确定使用状态,所述使用状态包括通话状态、浏览状态和待机状态;

二级分类器单元(40),用于根据磁场数据和经过噪声过滤的至少两个加速度数据,确定所述移动终端的运动类型;

热量消耗计算单元(50),用于根据移动终端的运动类型和使用状态确定运动信息,并且将所述运动信息转换为相应的卡路里消耗量;以及

电量优化单元(60),用于根据移动终端的运动类型和使用状态来减少识别移动终端运动时的电量消耗。。

2.根据权利要求1所述的装置,其中所述二级分类器单元(40)进一步包括:决策树策略子单元(401)、自适应成帧策略子单元(402)、运动特征向量策略子单元(403)和概率神经网络PNN策略子单元(404);

其中所述二级分类器单元(40)用于根据磁场数据和经过噪声过滤的至少两个加速度数据,确定所述移动终端的运动类型包括:

将经过噪声过滤的至少两个加速度数据作为决策树策略子单元的输入,通过计算所述经过噪声滤的至少两个加速度数据的标准差来确定移动终端的运动是否为非周期运动;

决策树策略子单元将经过噪声过滤的至少两个加速度数据中的一个与垂直升降电梯运动的加速度特征曲线数据进行比较,从而确定移动终端的运动是否为垂直升降电梯运动;以及

决策树策略子单元将磁场数据与自动扶梯运动的磁场特征曲线数据进行比较,从而确定移动终端的运动是否为自动扶梯运动。

3.根据权利要求2所述的装置,其中所述二级分类器单元(40)用于根据磁场数据和经过噪声过滤的至少两个加速度数据,确定所述移动终端的运动类型还包括:所述自适应成帧子单元(402)用于检测疑似周期运动的周期,对所述至少两个加速度数据构成的加速度特征曲线进行识别,确定所述加速度特征曲线中包含的周期数量和每个周期的开始位置和结束位置,当检测到疑似周期运动包括至少三个周期时,确定所述疑似周期运动为周期运动,并且利用所检测的周期组成自适应帧。

4.根据权利要求3所述的装置,其中所述运动特征向量子单元(403)用于对自适应帧进行特征值提取以组成特征向量,所述特征值包括:平均周期长度、所述至少两个加速度数据中各个加速度数据的X轴之间、Y轴之间和Z轴之间的标准差、所述至少两个加速度数据中各个加速度数据的X轴、Y轴和Z轴的分组Binned分布、以及所述至少两个加速度数据中各个加速度数据的Y轴和Z轴相关性和所述至少两个加速度数据中各个加速度数据的X轴、Y轴和Z轴中每个轴的平均能量。

5.根据权利要求4所述的装置,其中所述概率神经网络PNN子单元(404),用于根据运动特征向量子单元(403)提取的特征向量,执行PNN分类算法,确定周期运动的运动类型。

6.一种基于传感器的移动终端运动识别方法,其特征在于,所述方法包括以下步骤:

利用移动终端内置的加速度传感器收集至少两个加速度数据;

利用静噪滤波器对所述加速度传感器收集的至少两个加速度数据进行噪声过滤,从而降低所述加速度传感器的测量误差;

利用移动终端内置的磁场传感器收集磁场数据;

移动终端内置的二级分类器单元根据磁场数据和经过噪声过滤的至少两个加速度数据,确定所述移动终端的运动类型;

移动终端内置的状态监听单元根据移动终端的当前运行状态来确定使用状态,所述使用状态包括通话状态、浏览状态和待机状态;

移动终端内置的热量消耗计算单元根据移动终端的运动类型和使用状态确定运动信息,并且将所述运动信息转换为相应的卡路里消耗量;以及

移动终端内置的电量优化单元根据移动终端的运动类型和使用状态来减少识别移动终端运动时的电量消耗。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310367884.X/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top