[发明专利]一种基于视觉Transformer的多细粒度遮挡行人重识别方法在审
申请号: | 202310083676.0 | 申请日: | 2023-02-08 |
公开(公告)号: | CN116503895A | 公开(公告)日: | 2023-07-28 |
发明(设计)人: | 张静;郭权浩;刘娟秀;郝茹茜;王祥舟;杜晓辉;刘霖;刘永 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06V40/10 | 分类号: | G06V40/10;G06V10/26;G06V10/82;G06N3/08;G06N3/0455 |
代理公司: | 电子科技大学专利中心 51203 | 代理人: | 陈一鑫 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于视觉Transformer的多细粒度遮挡行人重识别方法,属于图像处理领域。包含一个全局分支和三个局部分支。在多分支架构的设计中,我们在通道注意力和空间注意力的基础上,通过联合交互不同细粒度分支的特征信息,设计了跨分支注意力模块,以此来强化各个分支之间的相互关系,调和在不同遮挡程度上,全局分支和局部分支的重要关系。在骨干网络视觉Transformer的设计中,提出特征增强模块F,其不仅能够获取到Transformer的全局感知信息,也能综合卷积操作的局部感受野,实现对图像全局特征和局部特征的把控,弥补图像中行人被不同程度遮挡带来的特征缺失问题。通过特征增强模块和跨分支注意力模块,我们的模型能够更好的适应遮挡行人重识别场景。 | ||
搜索关键词: | 一种 基于 视觉 transformer 细粒度 遮挡 行人 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310083676.0/,转载请声明来源钻瓜专利网。
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法