[发明专利]一种基于多层神经网络的沥青路面弯沉盆预测方法在审
申请号: | 202210102006.4 | 申请日: | 2022-01-27 |
公开(公告)号: | CN114444799A | 公开(公告)日: | 2022-05-06 |
发明(设计)人: | 时欣利;许绍晟;曹进德;安建武;徐向平 | 申请(专利权)人: | 东南大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06N3/04;G06N3/08 |
代理公司: | 南京众联专利代理有限公司 32206 | 代理人: | 杜静静 |
地址: | 210096 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于多层神经网络的沥青路面弯沉盆预测方法,所述方法包括以下步骤:步骤1、采集历年沥青路面使用性能检测数据及沥青路面使用性能影响因素数据,根据采集到的数据进行分类;步骤2、编码转换器对输入数据进行预编码;并通过长短期记忆(LSTM)网络和一个线性层将预编码矩阵映射为输出编码矩阵;步骤3、耦合器通过重构的方式对步骤2中的长短期记忆(LSTM)网络进行训练;步骤4:解释器:给出结构路面的弯沉盆数据预测;步骤5:使用基于python的深度学习框架pytorch来训练并测试多层神经网络模型,用于对沥青路面的弯沉盆进行预测。该技术方案基于多层神经网络模型预测沥青路面弯沉盆,与传统神经网络模型相比,大大提高了预测效率。 | ||
搜索关键词: | 一种 基于 多层 神经网络 沥青路面 弯沉盆 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210102006.4/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理