[发明专利]基于Transformer-CRF的藏文分词方法有效
申请号: | 202111520289.6 | 申请日: | 2021-12-13 |
公开(公告)号: | CN114330328B | 公开(公告)日: | 2023-10-10 |
发明(设计)人: | 于永斌;陆瑞军;群诺;头旦才让;唐倩;彭辰辉;王昊 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06F40/284 | 分类号: | G06F40/284;G06N3/0455;G06N3/047;G06N3/08 |
代理公司: | 电子科技大学专利中心 51203 | 代理人: | 周刘英 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于Transformer‑CRF的藏文分词方法,该方法包括:输入数据集、数据预处理、音节扩展、构建基于Transformer‑CRF的藏文分词模型、训练并保存模型及其参数以及输入待分词语料,输出分词结果。本发明以当前音节为中心向左向右扩展两个单元,使用unigram和bigram相结合的方法,可以提取到更多的特征向量。同时,本发明克服了传统分词方法中存在的运算速度、准确率低等缺点。另外,基于Transformer‑CRF的藏文分词模型采用并行计算,大大增加了计算效率,而且模型中的自注意力机制的特征抽取能力比LSTM的特征抽取能力要好。 | ||
搜索关键词: | 基于 transformer crf 藏文 分词 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111520289.6/,转载请声明来源钻瓜专利网。
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法