[发明专利]用于目标控制的离线强化学习方法、装置和设备在审
申请号: | 202111256006.1 | 申请日: | 2021-10-27 |
公开(公告)号: | CN114186474A | 公开(公告)日: | 2022-03-15 |
发明(设计)人: | 詹仙园;徐浩然;李健雄 | 申请(专利权)人: | 清华大学 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;G06N20/00;G06Q10/04;G06Q10/06;G06Q50/30;G06F111/04 |
代理公司: | 北京路浩知识产权代理有限公司 11002 | 代理人: | 耿向宇 |
地址: | 100084 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及深度学习技术领域,具体提供一种用于目标控制的离线强化学习方法、装置和设备。其中,用于目标控制的离线强化学习方法,包括:获取历史数据;基于历史数据,更新预设的行为策略模拟器,确定行为策略、和行为策略的奖励期望;基于历史数据、行为策略和策略优化目标函数,通过预设的智能体进行行为优化,得到优化策略;其中,策略优化目标函数为基于约束项和策略性能提升项构造的;约束项为基于最大似然估计的方法构造的;策略性能提升项为基于行为策略的奖励期望构造的。如此,基于最大似然估计法构造的约束项,约束了优化策略的最大化概率分布为行为策略,允许优化策略在高置信的状态下产生较大偏移,提高了优化策略的表现力。 | ||
搜索关键词: | 用于 目标 控制 离线 强化 学习方法 装置 设备 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111256006.1/,转载请声明来源钻瓜专利网。